CPSC 590 (Autumn 2003)

Introduction to Empirical Algorithmics

Holger H. Hoos
Introduction

Consider the following scenario:

You have just developed a new algorithm A that, given historical weather data, predicts whether it will rain tomorrow. You believe A is better than any other method for this problem.

Question:

How do you show the superiority of your new algorithm?
Theoretical vs. Empirical Analysis

Ideal: Analytically prove properties of a given algorithm (run-time: worst-case / average-case / distribution, error rates).

Reality: Often only possible under substantial simplifications or not at all.

〜 Empirical analysis
The Three Pillars of CS:

- **Theory**: abstract models and their properties
 (“eternal truths”)

- **Engineering**: principled design of artifacts
 (hardware, systems, algorithms, interfaces)

- **(Empirical) Science**: principled study of phenomenae
 (behaviour of hardware, systems, algorithms; interactions)
The “S” in CS – Why CS is a Science

Definition of ”science”:
(according to the Merriam-Webster Unabridged Dictionary)

“3a: knowledge or a system of knowledge covering general truths or the operation of general laws especially as obtained and tested through scientific method”

(Interestingly, this dictionary lists “information science” as well as “informatics”, but not “computer science”.)
Why “Computer Science” is a Misnomer:

CS is not a science of *computers* (in the standard sense of the meaning), but a science of *computing and information*.

CS is concerned with the study of:

- mathematical structures and concepts that model computation and information (theory, software)
- physical manifestations of these models (hardware)
- interaction between these manifestations and humans (HCI)
The Scientific Method

make observations

formulate hypothesis/hypotheses (model)

While not satisfied (and deadline not exceeded) iterate:

1. design experiment to falsify model
2. conduct experiment
3. analyse experimental results
4. revise model based on results
Empirical Analysis of Algorithms

Goals:

- Show that algorithm A improves state-of-the-art.
- Show that algorithm A is better than algorithm B.
- Show that algorithm A has property P.

Issues:

- algorithm implementation (fairness)
- selection of problem instances (benchmarks)
- performance criteria (what is measured?)
- experimental protocol
- data analysis & interpretation
Overview

Comparative Empirical Performance Analysis of …

- Deterministic Decision Algorithms
- Randomised Algorithms without Error:
 Las Vegas Algorithms
- Randomised Algorithms with One-Sided Error
- Randomised Algorithms with Two-sided Error:
 Monte Carlo Algorithms
- Optimisation Algorithms
Decision Problems

Given: Input data (e.g., graph G and number of colours, k)

Objective: Output “yes” or “no” answer (e.g., to the question “can the vertices in G be coloured with k colours such that no two vertices connected by an edge have the same colour?”)
Deterministic Decision Algorithms

Given: Two algorithms A, B for the same decision problem (e.g., graph colouring) that are:

- error-free, i.e., output is always correct
- deterministic, i.e., for given instance (and parameter settings), run-time is constant

Want: Determine whether A is better than B w.r.t. run-time.
Benchmark Selection

Some criteria for constructing/selecting benchmark sets:

- instance hardness (focus on hard instances)

- instance size (provide range, for scaling studies)

- instance type (provide variety):
 - individual application instances
 - hand-crafted instances (realistic, artificial)
 - ensembles of instances from random distributions
 (random instance generators)
 - encodings of various other types of problems
 (e.g., SAT-encodings of graph colouring problems)
CPU Time vs. Elementary Operations

How to measure run-time?

- Measure CPU time (using OS book-keeping & functions)
- Measure elementary operations of algorithm (e.g., local search steps, calls of expensive functions) and report cost model (CPU time / elementary operation)

Issues:

- accuracy of measurement
- dependence on run-time environment
- fairness of comparison
Correlation of algorithm performance (each point one instance)
Correlation of algorithm performance (each point one instance)
Detecting Performance Differences

Assumption: Test instances drawn from random distribution.

Hypothesis: Median of paired differences is significantly different from 0 (i.e., algorithm A better than B or vice versa)

Test: binomial sign test or Wilcoxon matched pairs signed-rank test
Detecting Performance Correlation

Assumption: Test instances drawn from random distribution.

Hypothesis: There is a significant monotonic relationship between the correlation of A and B

Test: Spearmans rank order test or Kendalls tau test
Scaling Analysis

Analyse scaling of performance with instance size:

- measure performance for various instance sizes
- fit parametric model (e.g., $\alpha \cdot e^{\beta x}$) to data points
- test interpolation / extrapolation
Empirical scaling of algorithm performance

![Graph showing empirical scaling of algorithm performance](image)

- Mean search cost [steps] vs. number of variables
- Two functions:
 - \(f(n) = 0.35 \times 2^{n/23.4} \) (kcnfs)
 - \(f(n) = 10.9 \times n^{3.67} \) (wsat/skc)
Robustness Analysis

Measure robustness of performance w.r.t. ...

- algorithm parameter settings
- problem type (e.g., 2-SAT, 3-SAT, ...)
- problem parameters / features (e.g., constrainedness)

Analyse ...

- performance variation
- correlation with parameter values
Randomised Algorithms without Error

Las Vegas Algorithms (LVAs):

- decision algorithms whose output is always correct
- randomised, i.e., for given instance (and parameter settings), run-time is random variable

Given: Two algorithms Las Vegas Algorithms A, B
for the same decision problem (e.g., graph colouring)

Want: Determine whether A is better than B w.r.t. run-time.
Raw run-time data (each spike one run)
RTD Graphs

- Graph 1: Shows the probability of solving a problem (P(solve)) against run-time [search steps].
- Graph 2: Displays 1 - P(solve) against run-time [search steps].
Probabilistic Domination

Definition: Algorithm A probabilistically dominates algorithm B on problem instance π, iff

\[
\forall t : P(RT_{A,\pi} \leq t) \geq P(RT_{B,\pi} \leq t) \quad (1)
\]
\[
\exists t : P(RT_{A,\pi} \leq t) > P(RT_{B,\pi} \leq t) \quad (2)
\]

Graphical criterion: RTD of A is “above” that of B
Comparative performance analysis on single problem instance:

- measure RTDs
- check for probabilistic domination (crossing RTDs)
- use statistical tests to assess significance of performance differences (e.g., Mann-Whitney U-test)
Significance Performance Differences

Given: RTDs for algorithms A, B on the same problem instance

Hypothesis: There is a significant difference in the median of the RTDs (i.e., median performance of algorithm A is better than that of B or vice versa)

Test: Mann-Whitney U-Test

Note: Unlike the widely used t-test, the Mann-Whitney U-Test does *not* require the assumption that the given samples are normally distributed with identical variance.
Sample Sizes for Mann-Whitney U-Test

m_A/m_B: ratio between the medians of RTDs for A and B

<table>
<thead>
<tr>
<th>sample size</th>
<th>m_A/m_B</th>
<th>sample size</th>
<th>m_A/m_B</th>
</tr>
</thead>
<tbody>
<tr>
<td>3010</td>
<td>1.10</td>
<td>5565</td>
<td>1.10</td>
</tr>
<tr>
<td>1000</td>
<td>1.18</td>
<td>1000</td>
<td>1.24</td>
</tr>
<tr>
<td>122</td>
<td>1.5</td>
<td>225</td>
<td>1.5</td>
</tr>
<tr>
<td>100</td>
<td>1.6</td>
<td>100</td>
<td>1.8</td>
</tr>
<tr>
<td>32</td>
<td>2.0</td>
<td>58</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>3.0</td>
<td>10</td>
<td>3.9</td>
</tr>
</tbody>
</table>
Performance comparison for ACO and ILS algorithm for TSP

\begin{figure}
\centering
\includegraphics[width=\textwidth]{comparison_graph}
\caption{Comparison of P(solve) versus run-time for ACO (MMAS) and ILS algorithms.}
\end{figure}
Significance of Differences between RTDs

Given: RTDs for algorithms A, B on the same problem instance

Hypothesis: There is a significant difference between the RTDs (i.e., performance of algorithm A is different from that of B)

Test: Kolmogorov-Smirnov Test

Note: This test can also be used to test for significant differences between an empirical and a theoretical distribution.
Comparative performance analysis for ensembles of instances:

- check for uniformity of RTDs
- partition ensemble according to probabilistic domination
- analyse correlation for (reasonably stable) RTD statistics
- use statistical tests to assess significance of performance differences across ensemble (e.g., Wilcoxon matched pairs signed-rank test)
Performance correlation for ACO and ILS algorithm for TSP
RTD Approximation with Exponential Distribution

![Graph showing P(solve) vs. run-time (search steps)]

- **empirical RLD**
- **ed[61081.5]**

The graph illustrates the relationship between the probability of solving a problem (P(solve)) and the run-time (in search steps) using two different methods: empirical RLD and ed[61081.5].
RTD Approximation with Mixture of Exponential Distributions

CP1(#815,#74)

0.49*ed[7000]+0.51*ed[10^7]
Randomised Algorithms with One-Sided Error

Types of Errors:

- false negatives (FN): incorrectly return “no” answer
- false positives (FP): incorrectly return “yes” answer

Monte Carlo Algorithm (MCA) with one-sided error:

- decision algorithm without false positives, i.e., “yes” answers are guaranteed to be correct
- false negatives may occur
- run-time for given problem instance (and parameter settings) is a random variable
Qualititative Differences between RTDs of two TSP Algorithms
Speed *vs.* Error Rate

Performance criteria:

- run-time (distributions)

- success probability = 1 - error probability = limit of probability for producing correct “yes” answer for run-time $\to \infty$

Question: How to evaluate tradeoff between run-time and success probability?
Asymptotic Run-Time Behaviour

- **completeness**
 — for each problem instance \(P \) there is a time bound \(t_{\text{max}}(P) \) for the time required by \(A \) to produce a correct answer

- **probabilistic approximate completeness (PAC property)**
 — for each “yes” problem instance the correct answer is produced by \(A \) with probability \(\rightarrow 1 \) as run-time \(\rightarrow \infty \).

- **essential incompleteness**
 — for some “yes” instances, the probability for producing a “yes” answer is \(< 1 \) for run-time \(\rightarrow \infty \).
Qualitative Differences between RTDs of two TSP Algorithms

![Graph showing the comparison between two TSP Algorithms, MMAS and MMAS*, in terms of the probability of solving (P(solve)) vs. run-time (CPU sec).]
Multiple Independent Runs

Key Insight: By performing multiple independent runs of algorithm, we can trade off error probability against run-time.

Practical Realisation:

- Run multiple copies of MCA in parallel on same problem instance (parallel processors, cluster of workstations, single CPU machine w/ time-sharing)
- Run multiple independent runs sequentially using cutoff and restart strategy
Effect of Dynamic Restart on ILS algorithm for TSP

![Graph showing the effect of dynamic restart on ILS algorithm for TSP](image-url)
Efficiency of multiple independent tries parallelisation

![Graph showing parallelisation speedup vs number of processors for bwlarge.c (hard) and bwlarge.b (easier).]
Monte Carlo Algorithm (MCA) with two-sided error:

- false positives and false negatives may occur
- run-time for given problem instance (and parameter settings) is a random variable
Sensitivity vs. Specificity

Sensitivity = $\frac{TP}{TP+FN}$

= fraction of “yes” instances correctly solved

Specificity = $\frac{TP}{TP+FP}$

= fraction of “yes” answers that are correct

Trade-offs between ...

- sensitivity and specificity
- run-time and sensitivity/specificity
Optimisation Problems

Given: Input data (e.g., graph G) and objective function f
(e.g., number of colours used in a given colouring of G)

Objective: Output optimal objective function value
(e.g., minimal number of colours required for a feasible colouring of G, i.e., chromatic number of G)
Bivariate RTD for ILS algorithm for TSP
Qualified RTDs for ILS algorithms for TSP

![Graph showing the relationship between probability of solve (P(solve)) and run-time in CPU seconds. Multiple curves represent different probabilities: 0.8%, 0.6%, 0.4%, 0.2%, and opt.]
RTD-based analysis of randomised optimisation algorithms:

- additionally, solution quality has to be considered

- introduce bounds on the desired solution quality
 \(\leadsto\) qualified RTDs

- bounds can be chosen w.r.t. best-known or optimal solutions,
 lower bounds of the optimal solution cost etc.

- estimate run-time distributions for several bounds on the solution quality
SQDs for ILS algorithms for TSP

P(solve)

relative solution quality [%]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10s
3.2s
1s
0.3s
0.1s
SQD-based methodology:

- run algorithm multiple times on given problem instance(s)
- estimate empirical solution quality distributions (SQDs) for different run-times
- get simple descriptive statistics (mean, stddev, percentiles, ...) from SQD data
- approximate empirical SQD with known distribution functions
- check statistical significance using goodness-of-fit test
Some questions in SQD analysis:

- How do the SQDs scale with increasing run-time?
- What is the limiting shape of the SQDs with increasing instance size?
Beyond Comparative Performance Analysis

Goal: Understand factors underlying algorithm’s performance

→ typically requires domain and algorithm-specific approaches

Two general approaches:

- Systematically study variants of algorithms and problem instances
 (“study mutants”)
- Build and analyse abstract models of algorithm (analytically/empirically)
A few general guidelines:

- Design your experiments carefully.
- Look at your data (all of it, from different angles).
- Be prepared for surprises (good and bad).
- Don’t discard results (unless there is a really obvious reason).
- Report negative observations.
- If it looks too good to be true … it probably isn’t true.
- Be sceptical – don’t blindly trust anyone (not even yourself).
- Be a scientist – ask “why?”.
- Be an explorer – and boldly go where no one has gone before!