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Abstract 
Computer animation has two methods of modeling: one is physical-based modeling; the 
other is example-based modeling. Although the example-based modeling now is the 
leading direction, physical-based modeling has its important as the basement in the area 
of computer animation. Spacetime constraints are a physical-based method for creating 
character animation. It specifies what the character should do-- “moving from here to 
there, ” how the motion should be performed, for instance “minimize waste energy”, the 
character’s physical structure—the geometry, mass, connectivity, etc. of the parts; and 
the physical resources available to the character to accomplish the motion, for instance 
the character’s muscles, a floor to push off from, etc. The requirements contained in this 
description, together with Newton’s laws, comprise a problem of constrained 
optimization. The solution to this problem is a physically valid motion satisfying the 
“what” constraints and optimizing the “how” criteria. I experiment as examples a simple 
accelerate particle and discuss the solution for a swing pendulum and a luxo lamp. These 
realistic motions conform to such principles of traditional animation as anticipation, 
squash-and-stretch, follow-through, and timing. This result shown that using efficiency as 
the criterium for selecting among the physically valid ways a creature can accomplish a 
task yields visually pleasing results.  
 
Introduction and Previews Work 
Computer animation has made enormous strides in the past several years and the 
example-based modeling now is the leading direction. Physical-based modeling could 
solve simple problem much more satisfied than example-based modeling.  However, in 
practical, it is really hard to solve complexes models currently. Not only the difficulties in 
analyzing the model, but also tough in deriving the required differentiations of those 
complicate algebraic expressions by code or by hand. The main object that I choose the 
spacetime constraints, as my course project for animation is to get some basic and 
canonical knowledge of physical-based modeling solution.  
Although it is hard, researchers still have done plenty of progress on the problem.  Pixar’s 
Luxo, Jr. [10] marked a turning point as perhaps the first computer-generated work to 
compete seriously with works of traditional animation on every front. Although Luxo, Jr. 
showed us that the team of animator, keyframe system, and renderer can be a powerful 
one, the responsibility for defining the motion remains almost entirely with the animator. 
Then, there has been considerable interest in incorporating physics into animation using 
simulation methods. [7, 14, 15, 1, 13, 4, 6] The appeal of physical simulation as an 
animation technique lies in its promise to produce realistic motion automatically by 
applying the same physical laws that govern real objects’ behavior. Unfortunately, the 
realism of simulation comes at the expense of control. Simulation methods solve initial 
value problems: the course of a simulation is completely determined by the objects’ 
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initial positions and velocities, and by the forces applied to the objects along the way. An 
animator, however, is usually concerned as much with where the objects end up and how 
they get there as where they begin. Problems cast in this form are not initial value 
problems. 
For instance, while simulating a bouncing ball is easy enough, making the ball bounce to 
a particular place requires choosing just the right starting values for position, velocity, 
and spin. Making these choices manually is a painful matter of trial and error. Problems 
such as this one, in which both initial and final conditions are partially or completely 
constrained, are called two-point boundary problems, requiring more elaborate solution 
methods than forward simulation.[3] Character animation poses a still more difficult 
problem. Animals move by using their muscles to exert forces that vary as a function of 
time. Calculating the motion by simulation is straightforward once these time-dependent 
force functions are known, but the difficult problem is to calculate force functions that 
achieve the goals of the motion. Specifying these functions by hand would be hopeless, 
equivalent to making a robot move gracefully by manually varying its motor torques. In 
an effort to reconcile the advantages of simulation with the need for control, several 
researchers [1, 7] have proposed methods for blending positional constraints with 
dynamic simulations. The idea behind these methods is to treat kinematic constraints as 
the consequences of unknown “constraint forces,” solve for the forces, then add them into 
the simulation, exactly canceling that component of the applied forces that fights against 
the constraints. Constraint force methods permit parts, such as a character’s ands or feet, 
to be moved along predefined keyframed trajectories, but provide no help in defining the 
trajectories, which is the central problem in creating character animation. While allowing 
a character to be dragged around manually like a marionette, constraint forces sidestep 
the central issue of deciding how the character should move.[17].  
These shortcomings led us to adopt a new formulation of the constraint problem, whose 
central characteristic is that we solve for the character’s motion and time-varying muscle 
forces over the entire time interval of interest, rather than progressing sequentially 
through time. Because we extend the model through time as well as space, we call the 
formulation spacetime constraints. The spacetime formulation permits the imposition of 
constraints throughout the time course of the motion, with the effects of constraints 
propagating freely backward as well as forward in time. Constraints on initial, final, or 
intermediate positions and velocities directly encode the goals of the motion, while 
constraints limiting muscle forces or preventing interpenetration define properties of the 
physical situation. Additionally, Newtonian physics provides a constraint relating the 
force and position functions that must hold at every instant in time. Subject to these 
constraints we optimize functions that specify how the motion should be performed, in 
terms of efficiency, smoothness, etc. Solving this constrained optimization problem 
yields optimal, physically valid motion that achieves the goals specified by the animator. 
 
A spacetime particle 
As a concrete example, I did a simple implement of an accelerating particle, influenced 
by gravity, and equipped with a “jet force”. With no restrictions on the forces exerted by 
its engine, the particle can move in arbitrary trajectory. The problem here is that of 
making the particle fly from a given starting point to a given destination in a fixed period 
of time, with minimal fuel consumption. This experimental problem is too simple to 
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produce any really interesting motion, but it exhibits all the key elements of the method, 
and it is the basement of further extension. 
 
1 Problem formulation  
Let the particle’s position as a function of time be y(t), and the time-varying jet force be 
f(t). Suppose for simplicity that the mass of the fuel is negligible compared to that of the 
particle, so the total mass may be treated as a constant, with a constant gravitational force. 
Then the particle’s equation of motion is 

0
..

=−− mgfym (1)                                                                                      

where 
..
y is the second time derivative of position. Given the function f(t) and initial 

values for y and  
..
y x at some time t0, the motion y(t) from t0, could be obtained by 

integrating equation 1 to solve the initial value problem. Instead we wish to make the 
particle fly from a known point a to a known point b in a fixed period of time. Suppose 
for simplicity that the rate of fuel consumption is 2|| f . In that case, we have constraints 

aty =)( 0  and bty =)( 1 subject to the objective function 
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which must be minimized. The problem then is to find a force function, defined on the 
interval (t0, t1), such that the position function  obtained by solving equation (1) satisfies 
the boundary constraints, and such that the objective function R is a constrained 
minimum. There exist a variety of standard approaches to solving problems of this form. 
I used the optimal control, which solve the initial value problem within each iteration, 
using the equations of motion to obtain the position function from the force function. 
([12]) It represents the functions y(t) and f(t) independently. The equation of motion then 
enters as a constraint that relates the two functions, to be satisfied along with the other 
constraints during the solution process. Each function is discredited, that is, represented 
as a sequence of values, with time derivatives approximated by finite differences. This 
approach leads to a classical problem in constrained optimization, for which a variety of 
standard solution algorithms are available.  
Let the discredited functions y(t) and f(t) be represented by sequences of values iy and  

if , ni ≤≤0 , with h the time interval between samples. To approximate the time 
derivatives of )(ty , we use the finite difference formulas: 
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Substituting these relations into equation 1 gives n 
“physics constraints” relating the iy ’s to the if ’s, 
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In addition we have the two boundary constraints 

01 =−= ayca  
and 

0=−= byc nb  
Assuming that f(t) is constant between samples, the objective function R  becomes a sum 

2||∑=
i

ifhR                 (5) 

which is to be minimized subject to the constraints. The discretized objective and 
constraint functions are now expressed in terms of the iy ’s and if ’s which are the 
independent variables to be solved for. 
 
2 Numerical Solution 
Then we need a numerical solution to find the correct answer to those equations. We 
know constraints 1y , ny  and motion equation (4) and objective function (5), they are 
known as Constraints factor. The scalar independent variables iS , which we don’t know, 
are the positions 12 −nyy L  and the forces 12 −nff L .    
In these terms, the standard constrained optimization problem is “Find iS that minimizes 
R subject to iC ”. The solution method I choose to use is a variant of Sequential 
Quadratic Programming (SQP), described in detail in [3]. The method computes a 
second-order Newton- Raphson step in R, and a first-order Newton-Raphson step in the 
Ci’s, and combines the two steps by projecting the first onto the null space of the second 
(that is, onto the hyperplane for which all theCi’s are constant to first order.) 
Because it is first-order in the constraint functions and second-order in the objective 
function, the method requires that we be able to compute two derivative matrices: the 
Jacobian of the constraint functions, given by  

j

i
ij S
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and the Hessian of the objective function, 
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The SQP step is obtained by solving two linear systems in sequence. The first, 
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yields a step '
jS that minimizes a second-order approximation to R, without regard to the 

constraints. The second, 
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yields a step ''
jS that drives linear approximations to the Ci’s simultaneously to zero, and 

at the same time projects the optimization step Sj onto the null space of the constraint 
Jacobian. The final update is ''

jS . The algorithm reaches a fixed point when Ci=0 and 
when any further decrease in R requires violating the constraints. 
 
3 Linear system solving 
The choice of a method for solving these linear systems is critically important, because 
the matrices here although is large, it is sparse and symmetric. So I choose to use the 
adapted sparse conjugate gradient (CG) algorithm described in [11], which is O_n2_ for 
typical problems. The CG algorithm solves the matrix equation a =Mb by iteratively 
minimizing 2|| Mba − , giving a least-squares solution to overconstrained problems. 
Provided that a zero starting-point is given for b, the solution vector is restricted to the 
null-space complement of M. 
 
4 Matrix evaluation. 
Then the most important factor , which used in solving the equation by applying the SQP 
algorithm  of the moving particle example, is Jacobian of the motion equation and 
Hessian of the objective function. 
Those evaluations are straightforward. The Jacobian of the physics constraint is given by 
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The Jacobians of the boundary constraints are trivial. The gradient of R is 

i
j

f
f
R 2=

∂
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and the Hessian is 

otherwise
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ff
R
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22 =

=
∂∂
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Although it happens that the toy problem we chose constrains initial and final positions, 
nothing in the solution approach depends on this configuration: initial and final 
conditions could be left free, and constraints at arbitrary internal points could be added. 
Moreover, arbitrary constraints of the form F(Si)= 0, not just position constraints, may be 
added provided that the constraint functions and their derivatives can be evaluated. 
The linear system for optimization of objective function is  
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And the constraints on the motion equation is 
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Then iteratively until }00{21 LL =pp . 
 
 
 
5 Extension to complex models 
After the simple experiment, we have the sense of how to solve the simple models by 
spacetime constraints. Fisrt we need to figure out it physical motion equation and then set 
some constraints on it. Second, we need to know it’s Jaccobian and Hessian of the 
functions. At last is to solving the linear system. As extension, first let us discuss the 
model- swing Stick, then mention some of the Luxo model. 
 
5.1 Swing Stick 
 For the swing stick( one side of the stick is fixed on a point), we set the scalar 
independent variables Si as the angle. If the stick’s length is L, and weight m, the stick’s 
angle is α (the angle between stick and perpendicular direction). Then the motion 
equation is the relative to f, which perpendicular with the stick and the angle and the 
gravity of the stick. And the objective function R is same as the moving particle. Once we 
set the motion equation, we could figure out the linear system, then we could compute the 
angle’s during the interval t0 and t1. 
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5.2 Luxo 
For Luxo, the situation is much more complicated. But as we know the motion 
equation for each segment of the lamp, depending on the angle of the adjacent two 
segments, the linear system equation still could be set up. 

 

 
 
frame1-frame4 

 
frame15-frame 30 
 
 
Result 
As the above picures showed, the start point is 100 =y and 2001 =−ny . Genearate 30 
frames during the 3 seconds, and use Slideshow Moviemaker to combine the avi file. 
The results show that spacetime methods are capableof producing realistic, complex and 
coordinated motion given only minimal kinematic constraints. The principle advantage of 
spacetime methods over simple keyframing is that they do much of the work that the 
animator would otherwise be required to do, and that only a skilled animator can do. 
Motions that would require highly detailed keyframe information may be sketched out at 
the level of “start here” and “stop there.” This is a profoundly different and more 
economical means of control than conventional keyframing affords, an advantage that 
easily outweighs the greater mathematical complexity and computational cost of the 
method. Of the new opportunities for motion control, perhaps the most exciting is the 
selection of optimization criteria to affect the motion globally, an area we have only 
begun to explore. With a little thought, it is clear that a magic “right” criterion, whether 
based on smoothness, efficiency or some other principle, is unlikely to emerge and would 
in any case be undesirable. This is because the “optimal” way to perform a motion, as 
with any optimization, depends on what you’re trying to do.  The advantage of the 
method of spacetime constraints is the result is realistic, and under the control of the 
designer, and the problem is it is hard to generate the motion equation for the common 
complex practical models. 
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