Teaching Agentsto Drive

CPSC 533B Topi cs in Conputer G aphics:

Al gorithmc

Ani mat i on

Asher Lipson, #25838020
18 April 2003

Abstract

This report presents the results of a course research
project for Algorithmic Animation. A probabilistic
model approach is taken to solving the problem of
an agent driving on a race track and dodging ob-
stacles. The model uses game logs from humans
driving on the race track in order to try and get the
agent to emulate human-like play. Results are pre-
sented for the agent driving the same track that hu-
mans drove on as well as for the agent driving a
track different to that which the humans drove on.

1 Introduction

This report presents the results of a research project for the
CPSC 533B course, Algorithmic Animation. The problem
being looked at is race track driving. In particular, one wants
to create a software agent that is able to drive around different
race tracks. Each track contains a number of obstacles which
the agent should be able to manoeuvre around.

Giving an agent the ability to drive around a race track in
a human-like manner would be extremely useful to the com-
puter gaming industry, where creating realistic artificial intel-
ligence (Al) is seen as being a key feature to the industries
growth [Champandard, 2002]. This research uses computer
games as a platform for Al learning, something that has been
previously proposed [Laird and Duchi, 2000].

This problem can be considered an extension to that looked
at in [Lipson et al., 2003], where an agent learnt to play a
room exploration game based on previous human plays of the
same game. This research takes things further by applying
the human game data from one track and allowing an agent
to race on a different track. From the human generated data,
a probabilistic mixture model is learnt using the Expectation
Maximisation (EM) algorithm. This model allows for query-
ing; choosing an action for the agent based on what humans
did in similar circumstances.

This research differs from a number of similar works in
that it does not seek to create an optimal agent that plays a
track perfectly. This problem has been looked at previously
and there are a number of existing solutions that do relatively
well in creating optimal game play. Obtaining human like
behaviour (which often is not optimal), includes allowing the
agent to make mistakes and to make moves that do not make

sense, much as humans do. In addition, the agent should
not have more knowledge of the world than a human would
have under similar circumstances. The agent should not be
globally aware nor omniscient and this leads to the use of a
“lookahead window”, where the agent is aware of its environ-
ment for some particular distance ahead of the vehicle.

To complement this report, a number of movies showing
the human and agent playing the track game are available for
download off the project website:
http://www.cs.ubc.ca/Talipson/projects.html.

The remainder of this report is structured as follows; the next sec-
tion provides some background to the problem and briefly mentions
related work that has been done. Section 3 describes the testing
platform and the state representation that is used. Thereafter, the ap-
proach used to try and solve the problem is described in depth and
this includes a description of the probabilistic model. In section 5,
all the results for both human and agent game play are presented and
these are discussed in section 6. Lastly, problems that were found
and possible future work is mentioned in section 7 and this report is
concluded with section 8

2 Background

The first problem that comes up in any agent learning environment
is how the agent should interact with the environment around it and
how to represent its knowledge of the world. There has been some
work done on automatically learning what information is important,
based on the readings from a number of sensors. There is however
the implicit assumption that some of the sensors duplicate informa-
tion and can be ignored in favour of other sensors. It also means that
the agent has access to information from all sensors and that this
contains all data. This does not solve the problem of what informa-
tion the sensors provide. In particular this has been done in a vehicle
environment [Koike and Doya, 1999], where the sensors provided
information on various aspects of the vehicle.

There is a large field of research into software agents and their
potential in a number of different applications. A number of survey
papers and books [Nwana, 1995], [Russel and Norvig, 1995] have
been written on this field and for a thorough review of this area, the
reader should consult one of these.

Much of the other related work revolves around using some form
of reinforcement learning with rewards in order to drive a path on a
track. This is often combined with the aim of learning an optimal
path according to some conditions such as shortest time or least ex-
pended energy. A common optimal policy in use is for the agent to
try and reach as high a speed as possible and to then either brake in
the face of slower traffic or to overtake them.

[Barto et al., 1993] learn a path that is optimal (according to their

criteria) on a short track with no obstacles. Work has also been done
in using lIcarus, an agent architecture with reinforcement learning
embedded, to learn a highway driving model [Shapiro et al., 2001].
Research has also been done in trying to model a human’s learn-
ing ability in car driving with a neural network [Wewerinke, 1994].
This includes overtaking and lane keeping through a system theory
approach.

The research described in this report differs in that it aims to cre-
ate an agent with driving abilities similar to a human. The creation
of an agent that can drive optimally is not a goal.

[Lipson et al., 2003] described an approach by which the agent
based its actions and decisions purely on the data generated by hu-
mans in the same simulation that the agent was playing. This al-
lowed the agent to effectively “mimic” the actions of a human. A
probabilistic model similar to the one used in that research is ap-
plied here. The biggest difference between [Lipson et al., 2003] and
the research described here is in the complexity of the environment
and the testing of the agent in worlds different to that used for the
human game play.

3 Representation

3.1 The testing platform: Track game

The testing platform for this research is a racetrack which the player
(human user or game agent) drives a vehicle on. There is a single
vehicle with the human user having a top down view of the world
and the track scrolling vertically down from the top of the screen to
the bottom. A human’s view of the game showing a track with no
obstacles can be seen in figure 1 and a track with obstacles in figure
2.

Figure 1: The human’s view of the game

Both the human user and the agent are aware of the track state
and any obstacles in a window ahead of their current distance. This
window, referred to as the lookahead can be seen in figures 1 and 2,
where the human user can see the track area for a distance of 5 points
ahead of its current position. The testing in section 5 was done with
a lookahead of 5 and 10. Each track used had 50 points (rows) to it
and looped around so that the end of the track joined back up with
the start of the track - this allowed for the player to race a number of
laps.

The world is considered to be non-deterministic, with the same
action in the same state at different times allowed to lead to different
states [Kaelbling et al., 1996]. The vehicle has a minimum speed
of zero (stationary) and a top speed of three. Trying to increase the
current speed above three or below zero keeps the vehicle’s speed at
that boundary value. The width span of possible movement for the

Figure 2: Obstacles ahead of the vehicle

vehicle is sixteen, thus from the vehicle’s starting position, one can
move a maximum of eight positions to the left or right. This prevents
the vehicle from going off screen. As with the speed, trying to move
beyond these bounds had no effect.

To emphasise the racing track paradigm, the vehicle is penalised
for leaving the track. The first time the vehicle leaves the track, its
speed is reduced to zero. One can imagine this as being a car stalling
when it leaves the road. To get the vehicle moving again, the player
has to increase speed. If the player continues being offtrack (without
returning to the track), no speed reduction is done. However, if the
player returns to the track and then goes offtrack again, the speed is
changed to zero. Thus each time the player leaves the track, they are
penalised. One would thus want to stay on track as much as possible.

Obstacles are implemented as horizontal “bars” that the vehicle
cannot cross through, but has to move around. In addition, the areain
front of an obstacle is slippery, meaning that the higher the vehicle’s
speed, the harder it is to avoid careening into the obstacle. If the
player hits an obstacle, the vehicle’s speed is cancelled out to zero
and no further increase in speed can be made until the vehicle moves
to the side of the obstacle. Each obstacle is two horizontal points
wide, meaning that the agent can hit the obstacle in three places; the
center of the obstacle or the left and right edges.

The player has a choice of five actions at each time step; increas-
ing or reducing the speed, shifting left or right and doing nothing.
Doing nothing essentially means no formal action of changing posi-
tion or speed is made and this is considered to be a valid move.

3.2 State representation

In order to model a human’s view of the world, the agent’s state at
each time step is defined as containing three pieces of information,
the current speed, whether there is a crash ahead and the distance
to the crash. The crash ahead can take three values, -1 indicating
the crash will be with the left side of the track, 0 implying no crash
ahead and 1 meaning that the crash will be with the right edge of
the track. The vehicle can only detect a crash from inside the track,
so moving from a position off track to a position on track across
a track edge does not register a crash. A similar representation is
provided for the obstacles. The state contains information on the
closest obstacle directly in front of the vehicle (i.e. obstacles to the
side are not recorded in the state). This information contains two
information bits, whether there is an obstacle in the immediate line
of sight straight ahead and how far that obstacle is from the vehicle.
Thus there are two potential crash possibilities for the agent, the
track edge, for which the vehicle is not penalised and an obstacle,
which the vehicle cannot drive through, but has to move around.

The distance measure for a track edge crash has a range of [-1,
(window size - 1)]. -1 implying that there is no upcoming crash,
0 meaning that there is a crash at the present time step and a posi-
tive value indicating the distance to the crash. Thus a crash can be
recorded as taking place in "window size” possible positions ahead
of the agent (including at 0). The distance is measured relative to the
agent, so one could view the agent as being at position (0, 0) in its
local coordinates. The agent is only aware of the closest crash to its
current position. Thus if the vehicle is going to crash in one time step
with the right track and five time steps with the left track, then the
current state would be [speed, 1, 1], indicating the nearest crash is
one time step away with the right track edge. With the window size
incorporated into the distance measure, one ensures that the agent
is not aware of possible crashes ahead of the window, much like a
human cannot tell what the track looked like outside of the window.
The obstacle measurement contained whether there is an obstacle
ahead and the distance to that obstacle. A distance of 1 indicates the
vehicle has crashed into the obstacle.

The vehicle’s speed is in the range [0, 3], there are three possible
crash descriptions for the track edge [-1, 1], six possible distance
to crash measurements (for the track edge) [-1, 4] (for a lookahead
of 5). For the obstacles, there are two values {0, 1} for the crash
indicating an obstacle ahead or not and six possible distances, again
[-1, 4] taking into account the lookahead window size.

Originally, the state was going to contain information on all track
edges and obstacles in the lookahead window, but this meant that the
state space was large and would quickly become unwieldy. Hence
the much simplified state representation containing information only
on the nearest track edge and obstacle.

4 Approach

The approach to solving this problem starts with human generated
data. Humans play a number of games and the data from those
games is logged into files. Once games have been played, one is able
to generate a probability matrix G(a, s, k) of the action a made in
state s for game k based on the game data. That is for each game we
have the probability of actions being taken for specific states. The G
matrix only contains information on states that are seen by humans.
If no humans see a specific state during their game play, that state
does not appear in any of our probability matrices.

This matrix is used as part of the Expectation Maximisation (EM)
algorithm. The EM algorithm is used to cluster the various games
into groups. EM s a fairly versatile algorithm allowing differ-
ent data to be clustered together, including text, images and sound
[Brochu et al., 2003]. By clustering the games into groups we have
an automatic mechanism for finding similar games. This potentially
could be done by hand, but it would take an extremely long time.
The EM algorithm is able to learn a model that describes all the data
submitted provided to it. The model is outlined further in the next
section, 4.1 and the EM algorithm in section 4.2. The two compo-
nents that make up the model are p(c), the probability of a cluster
being used and p(als, ¢), the probability of taking action a in state
s, whilst in cluster ¢. These two measures provide an indication of
how much of the game data each cluster contains as well as what the
relationships are between states and actions within each cluster. EM
does however converge to a local maximum and thus for each run of
EM slightly different clusterings appear.

Once the EM algorithm is complete and clustering has been done,
we choose a cluster through sampling from p(c), i.e. we would nor-
mally end up in the cluster with the highest percentage of data, but
will occasionally end up in clusters that hold less data (i.e. contain
games that were less played by humans).

Thereafter, at each time step we take the agent’s current state and
match it to the closest state in our chosen cluster. The closest state

is found by minimising the error measure:

A, = |s — 3|

where s is one of the states in the current cluster and 5 is the agent’s
current state.

We then sample an action from the generated p(als, ¢). We again
would obtain actions that are most often made by humans in that
state, but will also choose actions that are made less often by hu-
mans. This allows us to obtain actions from the human generated
actions distribution.

The next two subsections, 4.1 and 4.2 provide more detail on the
model learnt by EM. Note that the next two sections do not go into
the full details of the algorithm or the expressions, but rather try to
provide enough information to gain an understanding for this portion
of the report.

4.1 Model Specification

Each game is represented as a table Gx(k = 1,...,ng), ng rep-
resenting the number of games played by humans. Each row repre-
sents a game state and each column a specific action.

The mixture model is described as:

Ne Na Ng
iid
Gelo = Y p(o) [T []»(als,)%=
c=1 a=1s=1

with 8 £ {p(c), p(a|s,c)} representing the model parameters. n,
is the number of clusters (chosen by the user), n, is the number of
possible actions (for the track game there are five possible actions)
and n, is the total number of states (determined by the number of
games played by humans). We have that 37 p(c) = 1. For
this research, n. = 10, which is the maximum number of possi-
ble clusters. One can still have clusters that contain no games, eg.
games are split into only four clusters and thus six clusters contain
no information.

4.2 MAP Estimation with EM

EM consists of two steps, an E step and an M step. The E
step updates our expectation with respect to the model parameters
p(c), p(als, c) and the M step updates our model parameters. These
two steps are continually run one after another, updating the expec-
tation and model parameters. One can either choose to run the steps
until there is little change in value between two subsequent steps,
or can run for a set number of iterations. In this research, the steps
were run for 40 iterations. When updating p(c) in the M step, one
is essentially calculating which cluster games should be placed in.
The MAP estimation does not try and fit to all clusters, but allows
some clusters to contain no games - i.e. only the essential clusters
are used.

In our M step, the following two expressions are used to update
p(c) and p(als, o):

o) = gt

T — ne + ng

B -1 + EZil Gask;gck
ZZ;I:Iﬁ — ng + EZIQ:I Zil Ga’skgck

with &5, the expectation for cluster ¢ and game k. 8 and « are
Dirichlet prior parameters that force down the number of clusters,
that is try and prevent to many clusters from being used. In the EM
runs, o and 3 are given the values: o = 1.1and 8 = 5.

plals, ¢) =

5 Results

Each of the results described in this section are for an agent or human
doing two laps around the track. At the end of the two laps the
vehicle also has to be on the track, i.e. if the player completes two
laps, they would only register as complete when the vehicle is on the
track.

When referring to the track that the agent is trained on, it refers to
the track that the human player used. That is the track from which
the human data is generated, in order to construct the probability
matrices.

Table 1 presents overall information for the human player for two
different lookaheads on the track shown in figure 3, the training
track. Table 2 provides some more detailed statistics on the same
human runs in terms of the minimum, maximum and average value
for each of the measurements. Results for the agent racing the same
track as the human are provided in table 3 and for a different track in
table 4. This section presents the results without discussion. Section
6 compares and discusses the results between the various tables.

Obstacle

Track Edge

Figure 3: A full view of the training track played by both the
humans and the agent

5.1 Human training data

In table 1, for each of the two lookaheads, ten games were played.
Total states measures the number of states that were saved
over the course of the ten games. One can see that with a looka-
head of 10, a smaller number of states are saved. The number of
states is an indication of how long the humans took to complete the

Look || Games | Total | #times | Time spent | Obstacles
ahead states | offtrack off hit
| 5 | 10 | 1442 [8] 16 | 96
|10 [10 1271] 7] 10 | 72

Table 1: Human Training Data Total

laps, with less states indicating faster completion. # times off-
track measures the number of times that the vehicle went offtrack
and Time spent off measures the amount of time that the ve-
hicle stayed off track. A player could leave the track once, but stay
off track for 4 time steps. Lastly, Obstacles hit measures the
amount of time that the vehicle spent stuck behind an obstacle. A
human could spend a number of time steps stuck behind an obstacle,
before they moved around it and continued on the track.

Lookahead

5] 10
1 Total Timeg,q 142.3 | 125.2
2 Total Timein 131 105
3 Total Time, 4z 155 152
4 # times offtrack,., 0.8 0.7
5 # times offtrack i 0 0
6 # times offtrack,,, 4 3 2
7 Time spent 0ff,., 1.6 1
8 Time spent off,,;,, 0 0
9 Time spent off, 42 5 2
10 || Obstacles hit,,,, 9.6 7.2
11 || Obstacles hit,,,;n 1 0
12 || Obstacles hit,qz 21 15

Table 2: Human Training Data Bounds and averages

For each main measurement in table 2, the minimum, maxi-
mum and average values are provided as an indication of the human
bounds. Each statistic corresponds to the measurement of the same
name in table 1. One can see that the larger lookahead of 10 allowed
the human to finish the laps quicker and hitting on average slightly
fewer obstacles along the way. Both sets of games were rarely off-
track.

5.2 Training, racing on the same track

An agent was given 1000 time steps in which to complete two laps.
Table 3 shows the results for an agent racing the same track that the
human data was obtained from. These results are for the agent play-
ing ten games. The statistics are for a lookahead of 5 and 10. The
track was that shown in figure 3. The rows correspond to the mea-
surements described in section 5.1 with the minimum , maximum
and average value shown for each measurement and each of the two
different lookahead values.

5.3 Training, racing on different tracks

The statistics in table 4 are for an agent using the human data from
the original track (figure 3) and racing on a new track. The new
track, shown in figure 4 is the same length as the original track and
also contains obstacles, but is different in that it is a lot thinner in
width (on average half as wide). This was done to test the scalability
of the method and to see whether one could apply data gained from

Lookahead

5 [10
1 || Total Time,,, 303.9 | 288.4
2 || Total Time,,;iy, 131 150
3 || Total Time, 00 476 379
4 || #times offtrack,,, 14.2 13.6
5 || # times offtrack,,;, 4 5
6 || # times offtrack,,, . 28 19
7 || Time spent off,,, 143.6 | 140.1
8 || Time spent off,,,;n 84 91
9 || Time spent off,,, 4. 222 167
10 || Obstacles hitg,, 41 34.8
11 || Obstacles hit,,;n 0 0
12 || Obstacles hit,;, 4z 99 74

Table 3: Summary of results for agent racing and trained on
the same track

one track to another track. This is often done by humans where they
do not have a separate driving method for each road they are on, but
are able to use what they know about one track on a different track.

Obstacle

Track Edge

Figure 4: A full view of the test track played by the agent

The rows and descriptions presented in table 4 are the same mea-
surements as those shown in the previous tables, with minimum,
maximum and average values given. This table is a summary of the

Lookahead

10
1 || Total Time,,, 343.6
2 || Total Time,in 254
3 || Total Time,,qz 470
4 || # times offtracky,, 16.2
5 || # times offtrack,,;» 5
6 || # times offtrack,,, . 29
7 || Time spent off,,, 190.4
8 || Time spent off,,,;,, 123
9 || Time spent off,,,,. 266
10 || Obstacles hit,,, 91.3
11 || Obstacles hit,,n 56
12 || Obstacles hit,,, 4, 177

Table 4: Summary of results for agent racing and trained on
different tracks

results for an agent playing ten games. Tests were only done for a
lookahead of 10 due to that lookahead providing slightly better per-
formance than a lookahead of 5 when racing on the same track it
was trained on (table 3).

6 Discussion

There are a number of results that can be compared and discussed;
agent vs. human on the same track, comparing different lookahead
distances for an agent and finally looking at the performance of an
agent on an unknown track. Section 6.1 will look at the agent per-
formance compared to the human on the same track. The results for
the same track, but different lookahead distances for the agent is dis-
cussed in section 6.2 and section 6.3 looks at how the agent fared on
a new unseen track.

6.1 Human vs Agent on the same track

This section compares the results generated for the ten human played
games presented in section 2 and for the agent played games for the
two lookaheads in section 3. Both sets of results were for the same
track.

The first thing one notices is the average time that it took to com-
plete two laps of the track. The average time for both lookaheads
is approximately half for the human player what it is for the agents.
The agent took twice as long on average and even worse for the max-
imum time, where the agent was two and a half to three times slower
in maximum time. Thus on average the agent did not complete the
laps in a time even close to that of the human. However, for a looka-
head of 5 the agent managed to achieve the same minimum time
as the human once. The method thus can produce a good agent in
terms of human measurements. Unfortunately this did not occur for
a lookahead of 10, where the agent was approximately 50% slower
than the human of the same lookahead.

The humans managed to stay ontrack extremely well and rarely
ventured off track. This is not the case for the agents, where they
frequently went offtrack. The humans left the track on average less
than once per game, but the agents amounted to 14 times per game,
a vast increase. The results decline further when one looks at the
amount of time the agent spent offtrack. On average the agent spent
over 100 times more time offtrack than the human. Each time the
agent went offtrack it took about ten time steps to return to the track.
This contrasts with the human approach of returning to the track
within two or three time steps.

When humans played the game, what would sometimes happen
is that they would increase their speed before returning to the track.
They would also sometimes not make an action for several time steps
before returning to the track. Thus when the agent had to choose an
action it was from a distribution across mainly these three actions.

The number of obstacles hit appears to make the agent look ex-
tremely good at the minimum end of the scale and not so good at
the top end. As in the offtrack measurements, the agent on average
and at maximum spends more time hitting (or stuck behind) obsta-
cles. Looking at the minimum bounds of the scale, it seems like the
agent achieves as good, if not better results than the human player.
However, there is some ambiguity in these results which can be ex-
plained through the offtrack numbers. Obstacles were only placed
on the track and with the agent spending so much time offtrack it
meant that there were no obstacles to hit. So the low obstacles hit
value is due in large part to the agent not being on the track and thus
there not being any obstacles to hit.

Although some of the total time values for the agent were com-
petitive against human values, this was not the case for the obstacles
or offtrack measurements.

6.2 The effect of the lookahead distance

Table 3 (page 5) shows results for a lookahead of 5 and a lookahead
of 10. It was found in table 2 in section 5.1 that the larger lookahead
allowed humans to complete the laps in a notability shorter time and
hit slightly fewer obstacles - was the same evident in agents based
on the human data?

A lookahead of 10 required on average a shorter amount of time to
complete two laps and the maximum time was almost 100 time steps
lower than that required by a lookahead of 5. However, strangely
enough, the minimum time was shorter for a lookahead of 5 than
10. This was the same value that matched the minimum time for the
human player. An explanation would perhaps be that EM managed
to find an extremely good clustering for that run and that the agent
was able to sample good actions out of those clusters.

We have a similar situation occurring in the number of times the
agent went offtrack, a lookahead of 10 provided a slightly lower
average number of times off track when compared to a lookahead of
5 and also a lower maximum value. However, the minimum value
was in favour of a lookahead of 5, though only by a single time step.

This pattern again repeats itself for the time spent offtrack. The
minimum time found across 10 games was lower for a lookahead of
5, than for a lookahead of 10, but a lookahead of 10 provided better
results for the maximum and average amounts of time spent offtrack.
Again, the maximum value was significantly lower for the lookahead
of 10, compared to the lookahead of 5, with the minimum and aver-
age values being only slightly better for their respective lookaheads.

Looking at the obstacles hit measurements, the lookahead of 10
is better on average and at a maximum value than a lookahead of
5. The minimum number of obstacles for both lookaheads is 0, but
as mentioned previously this is ambiguous as these cases were often
for when the agent spent the majority of its time offtrack.

The biggest problem with both lookaheads is the amount of time
they spent offtrack, compared to the total time they took to com-
plete the track. The agent generally spent approximately half of it’s
time offtrack. That is a fairly woeful performance by any measure
and needs to be corrected. When these figures are compared to the
amount of time the humans spent offtrack out of the time they took
to complete the laps, then it shows how bad the agent was actually
doing.

The one positive in these results is that it showed that a lookahead
of 10 definitely helped the agent achieve better results on average
than a smaller lookahead. The minimum values for much of the
measurement were better for the smaller lookahead, but this was for

one specific case that worked extremely well. Overall, however, the
agent had difficulty in staying ontrack for a meaningful amount of
time.

6.3 Agent training and racing on different tracks

Table 4 (page 5) shows the results for the agent racing on a different
track to that which the human data was obtained off. The humans
drove on the track shown in figure 3 (page 4), whereas here, the
agent drove on a different track, that shown in figure 4 (page 5). The
track that the humans drove on will be referred to as the training
track and the track that the agent drove on, the test track.

The agent took longer to complete two laps of the test track
than for the training track. The major contribution to this was that
both the minimum and maximum track times increased by 100 time
points, 66% increase for the minimum and approximately 25% for
the maximum. The maximum time for the lookahead of 10 on the
test track was in fact less than the maximum time for a lookahead of
5 on the training track.

The minimum and average number of times offtrack shows little
difference between the two tracks. However, the maximum number
of times offtrack recorded by the agent was more than a 50% in-
crease over the training track data. These values are only slightly (1
time step in the case of the minimum and maximum measurements)
higher than those recorded by a lookahead of 5 for the training track.

The total time spent offtrack increases by a large amount over that
recorded for the training track. Each of the minimum, maximum and
average values increase by approximately 50%, with the maximum
time spent offtrack (266) more than double that of the minimum time
(123) for the test track.

The amount of time spent stuck behind obstacles is on average
almost tripled from 34.8 for the training track to 91.3 for the test
track. The test track no longer has cases where the agent managed
to avoid all obstacles (as it did in the training track), but rather spent
a minimum of 56 time steps stuck behind obstacles. The maximum
value increased by 2.5 times over the agent’s results for the training
track. Part of this is expected. Although both the training and test
tracks have the same number of obstacles, 12, the test track is much
thinner and this makes it harder to avoid obstacles whilst still staying
on the track.

The agent on the test track spends on average 55% of its total time
offtrack. This is higher than the 49% that the agent spends offtrack
on the training track. If one takes into account the amount of time on
average that the agent spent stuck behind an obstacle, then 82% of
the total time to complete two laps is spent either offtrack or ontrack,
but stuck behind an obstacle. Again using the average values, the
agent spends only 62 time steps on the track and not stuck. The
agent definitely does worse on the test track with human data from
a different track that it does on the training track with human data
from that same track.

7 Problemsand future work

A number of problems with the agent have been mentioned in previ-
ous sections. These are discussed in more detail with some possible
solutions in this section.

7.1 Simplicity of the state

The information that is stored in the agent’s state is fairly simplistic
and tries to contain all the information that is needed for the track.
This was perhaps part of the problem - too simple. One normally
would want to abstract as much detail away from the state as one
could and use the simplest possible state representation. However,
in this case, the simplicity of the state meant that certain states that
were visually different to the human eye, were the same state to the

agent. For example, as mentioned previously (section 3.1), the agent
could hit an obstacle in three places (left edge, right edge and center
of the obstacle), but the state does not differentiate between any of
them. If a human is caught on the right edge of an obstacle then
they would always move to the right, but to the agent there is no
difference between being caught on the left, right or center parts of
the obstacle — this would mean that actions for all three would be
combined into actions for a single state even though the actions are
for different states.

The simplistic state may also have partly contributed to the off-
track problems. A human is able to discern that the state curves
from right to left and that there are a number of possible crash posi-
tions ahead. The state for the agent only stored the closest possible
crash point. Expanding this to include more than one possible crash
point or to include all possible crash points within the lookahead
window may be beneficial to this problem. However, this increases
the state space dramatically. Excluding any obstacle information
and only taking into account the first possible crash with the edges
of the track for a lookahead of 5, there are 72 unique states. If one
takes all track edge points into account within a lookahead window
of 5, the number of states increases to almost 30 000. Including ex-
tra obstacle information takes this number to almost 360 000 states.
A decision was made to keep the state as simple as possible and to
reduce the number of possible states. However, based on these re-
sults, this may not have been the best choice. It is worth considering
a more complex state containing more information.

More work is definitely required to look at a state containing dif-
ferent information and perhaps being representative of the entire en-
vironment within the lookahead window.

7.2 Unseen states and actions

The second problem again involves states. The model and probabil-
ity matrices are constructed with states that the human has seen. If
the agent reaches a state that was not seen by a human player, then
the agent finds the closest state in the probability matrix and chooses
actions from there. This would be especially important when one
takes the human data from one track and uses it to control the agent
on a different track.

The matching function was very simple and had each element
of the state (speed, distance to crash, etc) weighted equally. Some
work needs to be done in deciding whether certain elements are more
important than others — this would affect which state was chosen for
sampling when no exact state existed. An alternative solution would
be to come up with a method for including states that the humans
had not seen. Whether it is possible to infer a distribution over the
actions for states that have not been seen is uncertain. One could
possibly take the states that had been seen and find some form of
interpolation or mapping method to take to states that had not been
seen. This would change the problem of finding a good function
to match to the closest state to a problem of inferring actions for a
new state from previous states. The latter problem is arguably more
difficult, but perhaps could be more rewarding to the results.

It may be possible to construct an action distribution for an unseen
state based on previous states and action distributions. It may also
have been previously worked on and some research needs to be done
into this problem.

7.3 Agent history

The method as implemented only takes the current state into account
with the agent not storing its history. It would be interesting to see if
implementing some sort of history, perhaps in the form of a Markov
process would affect the results. This could store a history of only
one state or possibly more. One could alter the model to take this
into account by using p(s’ | s, a, ¢) which would be the probability

of ending up in state s’ from state s when making action a and in
cluster ¢. One could also change the games to include details on the
previous state.

7.4 Other problems

As mentioned in previous sections, the agent spent almost half its
time offtrack, which is far too much. It is possible that the problems
outlined above could have contributed to this problem, but this is
uncertain. Only by trying to solve them would this be found.

One idea that was proposed by Nando de Freitas was to combine
this method with some form of reinforcement learning and perhaps
to be able to switch between the two methods or to combine them.
This is a very good idea which should be looked at in the future.
However, it is felt that the method presented in this report should first
be at an appropriate standard whereby the agents are competitive
against humans before combining it with other methods.

8 Conclusion

This report presented the results of a research project into agent driv-
ing simulations. The aim was to construct a probabilistic model that
would allow an agent to drive on a track with obstacles. The basis
for the model would be game data that was generated by humans
playing the same simulation.

A number of tests were done including the agent driving the same
track that the human drove and the agent driving a different track to
the humans. Results from these tests were discussed and compar-
isons made between the tests. Some discussion was also given on
the effect of different lookahead windows, that is how much of the
track and obstacles ahead of its current position the agent was aware
of.

It was found that both a human and an agent benefited from hav-
ing a larger lookahead, i.e. could see more of the track ahead. How-
ever, the agent was found on average to not be competitive against
the human and produced results of a lower standard. There were
some promising results though, including the agent producing a min-
imum time equal to that of a human for a lookahead of 5 on the same
track.

Some possible problems that could have led to the low quality of
the agent results were also presented, with possible solutions that
could be implemented in the future. One of the hardest parts in cre-
ating an agent—environment interaction is deciding what information
should be represented in the agent’s state. One would normally look
for the simplest possible state, but in this project it may have handi-
capped the agent.

Although much of the presented results were not what was hoped
for, they led to the identification of a number of possible ways for-
ward. These should lead to improvements in both this research
project and similar work on agent track racing and human-like game

play.

Acknowledgements

I°d like to thank Michiel van de Panne, David Poole and Nando de
Freitas for their help and discussions on this project.

References

[Barto et al., 1993] A.G. Barto, S.J. Bradtke, and S.P. Singh. Learn-
ing to act using real-time dynamic programming. Technical Re-
port UM-CS-1993-002, University of Massachusetts, Amherst,
1993.

[Brochu et al., 2003] E. Brochu, N. de Freitas, and K. Bao. The
sound of an album cover: Probabilistic multimedia and informa-
tion retrieval. In AI-STATS, Florida, USA, January 2003.

[Champandard, 2002] A.J. Champandard. The future of game Al:
Intelligence agents. http://www.ai-depot.com, 2002.

[Kaelbling et al., 1996] L.P. Kaelbling, M.L. Littman, and A.W.
Moore. Reinforcement learning: A survey. Journal of Artificial
Intelligence Research, 4:237 — 285, 1996.

[Koike and Doya, 1999] Y. Koike and K. Doya. Multiple state es-
timation reinforcement learning for driving model: Driver model
of automobile. In Proceedings of the IEEE International Confer-
ence on Systems, Man and Cybernetics, volume 5, pages 504 —
509, 1999.

[Laird and Duchi, 2000] J.E. Laird and J.C. Duchi. Creating
human-like synthetic characters with multiple skill levels: A case
study using the soar quakebot. In AAAI 2000 Fall Symposium,
November 2000.

[Lipson et al., 2003] A. Lipson, N. de Freitas, and E. Brochu. The
touring test: Human-like play in computer games. Unpublished
research paper, January 2003.

[Nwana, 1995] H.S. Nwana. Software agents: An overview.
Knowledge Engineering Review, 11(2):205-244, 1995.

[Russel and Norvig, 1995] S.J. Russel and P. Norvig. Artificial In-
telligence, A Modern Approach. Prenctice Hall, Upper Saddle
River, NJ, 1995.

[Shapiro et al., 2001] D. Shapiro, P. Langley, and R. Shachter. Us-
ing background knowledge to speed reinforcement learning in
physical agents. In The Fifth International Conference on Au-
tonomous Agents, Montreal, Canada, May 28 - June 1 2001.

[Wewerinke, 1994] P.H. Wewerinke. Modeling human learning in-
volved in car driving. In Proceedings of the IEEE International
Conference on Systems, Man, and Cybernetics, volume 2, pages
1968 — 1973, 2 - 5 October 1994.

