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Abstract 

This paper presents a technology that enables an untrained user to draw and 
animate a quadruped in tens of seconds. The system recognizes a quadruped 
drawn by a user and creates a skeleton from the sketch. Following a few simple 
rules the user is able to draw the movement she wants the quadruped to do. The 
system will parse the sketch and interpret it to let the quadruped walk, jump, trot, 
gallop or sit. To do all of this the system uses several techniques to understand the 
drawings, as well as key framing, controller based animation and inverse 
kinematics to animate the quadruped. 
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1 Introduction 
This paper presents the results of a research project for the course “Algorithmic 
animation” taught by Michiel van de Panne at the University of British Columbia 
in 2003. The motion doodle system for human characters, i.e. bipeds, by Burke, 
Thorne and van de Panne [1] inspired us for this project and is the basis of our 
system. Similar to their system, ours allows the user to easily sketch and animate an 
articulated character in tens of seconds, whereas we focused on quadrupeds, such 
as cats and horses. 

2 Motivation 
The idea behind this system is to create a fast, easy to use, but still flexible and 
powerful technique to build animations.  
 
Most of the current research tries to improve the technology of animation. New 
methods are found and we can animate and render things of a complexity we 
never thought possible. However only a small effort is put into finding ways to 
make it easier for users to create good animations.  
 
Systems like the one we introduce in this paper can also fill the gap between 
simple storyboards and animations. Even today, when a complex animation has to 
be created, drawings are used to illustrate what is needed. This is done because we 
do not have animation systems which are capable of building a good and flexible 
animation in a short time and an easy way. 
 
Most of the existing animation systems can only be used by trained users and it is 
even more unthinkable to let a child create a good animation. Children love to 
draw, it strengthens their imagination and thus it would be good to allow them to 
animate what they draw. However, to let this happen we need very easy to use 
animation tools. 
 
Based on these ideas Burke, Thorne and van de Panne introduced a system [1] 
they called “Motion Doodles”, which enables a user to draw a biped character and 
animate it in 10 to 20 seconds.  
 



Motion Doodles for Quadrupeds 3 

The system we introduce in this paper is based on their work. The next step after 
being able to animate bipeds is to animate different characters, especially 
quadrupeds. This step makes sense, since most mammals are quadrupeds. It is also 
very interesting to see if the different gaits and forms of motion the quadrupeds 
on our planet developed are transferable to a system like this.  
 
Thus, we want to make it possible for a user to draw and then animate different 
quadrupeds in a fast and easy way.  

3 Related Work 
This project is based on the work of Burke, Thorne and van de Panne [1], which 
they presented at UBC’s Imager-Lab-meeting. We reused several parts of their 
character recognition system, especially low-level methods, as well as the basic 
architecture of their approach.  
 
In the field of computer vision there has been a lot of research in recognition of 
human drawings. However, the approach was very different and the aim was to 
understand human drawings in a very general way. A brief overview on this is 
given in [7] by Randall Davis. 
 
In Computer Animation there is a lot of work on key framing techniques and 
controller based animation. A framework to combine and manage different 
controllers for physics based animation is described in Composable Controllers for 
Physics-Based Character Animation by Faloutsos, P. et al. [6]. 
 
For papers connected to our inverse kinematics solver we refer to Chris Welman’s 
Inverse Kinematics and Geometric Constraints for Articulated Figure Manipulation [2], which 
describes the method we implemented. 

4 Approach 
In the current approach we concentrate on a single quadruped. As a first 
specification of a quadrupedal creature we chose the cat because it is fairly easy for 
an average user to imagine. There is however one problem in the development of 
a system for quadrupeds: humans don’t intuitively know how animals are built, 
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and unfortunately very often a number of things (e.g. fur) makes it hard to find out 
about the animal’s skeleton. Since for humans it is much harder to imagine the 
physique of a (quadrupedal) animal compared to that of a human, we had to put 
extra effort in the development of a representation which is authentic compared to 
a real animal, but also applicable. 
 
Thus, on the one hand we analyzed appropriate anatomy literature and photos of 
Eadweard Muybridge [9] of cats. On the other hand we also asked numerous 
people to draw cats – at the beginning without any constraints. Later we merged 
the gathered information and developed some loose constraints, such as the 
number of strokes allowed for drawing the cat. Finally, we came up with a fairly 
good representation that requires only a few basic constraints. 
 
The developed system comprises two major parts, one for sketching the character 
and one for the motion sketching which takes also care of all computations for the 
animation.  

4.1 Character Sketching 
The user sketches the quadruped in a 2D-side-view using 12 ellipsoidal figures, 
comprising the head, neck, torso, upper foreleg, lower foreleg, heel and toes on 
the foreleg, upper rear leg, lower rear leg, heel and toes on the rear leg, and finally 
the tail, where the sketch has to satisfy certain constraints. Additionally, the user 
might add some annotations to the body parts. From the sketch we infer the joints 
of the articulated character. In the next step we identify the different body parts, 
such as the torso or the tail, and then build the skeleton from this information. 
The sketched body parts are assigned to the corresponding skeleton parts. The 
skeleton data is then passed to the motion sketching / animation part of the 
system. 

4.2 Motion Sketching 
The user draws strokes (arcs and a loop), which are recognized and interpreted. 
The more or less abstract, but intuitive sketches specify the type of motion, the 
timing as well as the start and respective end points of the motion. For example, a 
long and high arc will be interpreted as a jump of the height and the length of the 
arc. The computation of the motion, i.e. the joint angles of the limbs, is based on a 
pool of controllers, one for each type of motion, such as a normal walking step or 
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a leap. The controllers themselves work based on key frames and an inverse 
kinematics system. 

5 Implementation 
Our system includes two core components: the character sketching and the 
motion sketching. First, we will concentrate on the character sketching part. Since 
our system is based on the one of Burke et al. [1], and a number of lower level 
functions are taken from there, we describe some parts in less detail. For more 
detail on these parts the reader is referred to [1]. 

5.1 Character Sketching 
The creation of the articulated character starts with the drawing by the user. She 
sketches 12 links, comprising the head, neck, torso, upper foreleg, lower foreleg, 
heel and toes of the foreleg, upper rear leg, lower rear leg, heel and toes of the rear 
leg, and the tail. Each link is defined by one continuous stroke and the order in 
which the user draws the links is not important. However, there are some 
constraints for the location and orientation. The cat must be drawn facing the 
right side of the screen, and the tail must be the most left link and the head the 
most right link. A “normal” standing pose is also mandatory. An example can be 
seen in Figure 1 (a). The abovementioned assumptions were necessary in order to 
ensure a correct recognition. In contrast to the human character in [1] for the 
quadruped several issues occur that make it necessary to constraint the sketch at 
this stage.  
 
Once the character is sketched, the system automatically infers the joint locations 
and identifies the body parts. After having created the second foreleg and rear leg, 
the system finally builds the skeleton with the sketches assigned to the 
corresponding bones. 
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5.1.1 Inferring the Joints and the different Body Parts 
When the user draws, each 
continuous stroke is recognized 
as one link. Due to the required 
constraints and the facts we 
know about the connectivity of 
the links, it is easy to identify the 
body parts and infer the 
skeleton. 
Once a link is drawn the 
principal axes are computed (see 
Figure 1 (b) ) and an oriented 
bounding box is fitted to the 
link (see Figure 1 (c) ). 
Once 12 links are drawn, the 
system determines the joints and 
with it the connections of the 
links. For the major axis’ 
endpoints of each link the 
algorithm finds the closest link 
by computing the Euclidean 
distance to every point of the 
other links. When the closest 
link is identified the joint 
location is computed as the 
geometric intersection between 
the major axes of the two links. 
If the angle between the axes is 
less than 20°, i.e. they are almost 
parallel, the joint is computed as 
the midpoint of the line 
connecting the endpoints of the 
major axes of the two bounding 
boxes. Otherwise the joint 
would be too far away from a 
reasonable position. 
 

Figure1: Inferring the skeleton from the sketch
 (a) sketched cat (b) principal axes 

(c) bounding boxes 

(a)

(b)

(c)
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The neck joint and the tail joint 
first are situated on the torso 
bone. To achieve a more 
authentic joint position and 
motion behavior of the cat they 
are moved to the closest end 
point of the major axis of the 
corresponding link, i.e. neck and 
tail (see Figure 2 (a) ). 
 
When all joints are determined 
and are assigned to the links, we 
identify the body parts. From 
the required constraints we can 
identify the most right link as 
the head and the most left link 
as the tail. The neck is the only 
link connected to the head. The 
torso is identified as the highest 
link, which is not one of the 
links head, neck or tail. The rear 
leg and the foreleg are 
distinguished through their 
relative location. And finally the 
different parts of the legs are 
identified by the implied connectivity (upper part-> lower part-> heel-> toes). 
 
The pseudocode of the algorithm is shown in Figure 3. In some parts it is fairly 
similar to the one of Burke et al. [1]. 

5.1.2 Building the Skeleton 
The bones of the representative skeleton are built by connecting the pertinent 
joints. Thus, for example, the upper fore leg bone will be built connecting the hip 
and the knee. However, there are exemptions. The bones for the body parts, 
which do not have two joints, are computed as the line from the one joint to the 
furthest endpoint of the sketched link. 

Figure 2: (a) joint locations (b) inferred skeleton 

(a)

(b)
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When the skeleton is built, the torso and the tail are broken into parts, which 
introduces two new joints in the torso, between the lower and the mid spine, and 
between the mid and the upper spine, and three new joints in the tail. These joints 
are added at fixed fractions of the bone and allow for the bending of these parts of 
the articulated character. 
 
In addition to the regular bones there are two fake bones created, connecting the 
neck with the upper spine, and the tail with the lower spine. They work as internal 
connections to complete the skeleton so that all bones are bonded. Finally, adding 
a second foreleg and rear leg completes the skeletal structure. 
 

 
The current approach works fairly well even though it fails for weird drawings of 
cats, e.g. a X-legged cat, or if the pose is totally different from the required one. 
However, the algorithm gives reasonable results considering the assumptions that 
are made. 

5.1.3 Adding Annotations 
The first sketch of the quadruped is fairly simple with little detail. This is exactly 
what makes the system so easy and quick to use. Nevertheless, one might want to 

1. For each sketched link 
2.  Compute the principal axes and fit an oriented bounding 
  box to the link 
3. For each link i 
4.  For each major axis endpoint on link I, Pi1 and Pi2 
5.   Go over all links j != i, find the closest point Pj 
6.   If major axes of links are not parallel 
7.    create joint Jn at geometric intersection of 
    major axes of i and j 
8.   else 
9.    create joint Jn at midpoint of line PiPj 
10. identify head, neck and tail applying the constraints 
11. move head joint and tail joint 
12. identify torso as highest which is not head, neck or tail 
13. build skeleton 
14.  create second foreleg and rear leg parts 
 

Figure 3: Pseudocode for recognition of skeletal structure
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add more details. In the present state, it would be nice, for example, to add some 
fur to the cat or design the head with ears etc. Our system allows that after the 12 
links are drawn. The user can sketch further figures that are bound to the closest 
link and are animated as if they were parts of the link. 
The possibility to add various kinds of annotations also enhances the applicability 
of our tool. So we take a step closer to replacing the manual storyboard used for 
animations and films. 

5.2 Motion Sketching 
The second part of the system is responsible for the motion of the character. This 
includes all the motion sketching and the computation while the resulting 
animation is afterwards displayed in the other part. 
 
After having received the skeleton data, this part of the system tracks the mouse 
input of the user. Her sketches are identified and the needed motions are built. 
The resulting poses of the quadruped are created and send to the other part of the 
system, where the drawn body-parts are fitted back on the skeleton and displayed. 
 
The movement the user wants has to be interpreted and the data extracted out of 
the drawing. Based on this information the correct motion has to be created. This 
is done by using key framing in combination with an inverse kinematics solver and 
constraints. 
 
We will first describe the system design, then explain the controller technology and 
the key framing and finally talk about the inverse kinematics system. 

5.2.1 System Design 
The architecture of this system is, as mentioned before, based on the biped-system 
of Burke, Thorne and van de Panne [1]. We decided to reuse their basic structure 
but to change it, to make it more flexible and to decrease the coupling. 
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In Figure 4 we present 
an overview on the 
architecture.  
 
The qpFacade class 
encapsulates the whole 
part of the system from 
the character sketching 
part. All communication 
between the two parts 
go through this class. 
Sketch is responsible 
for the main 
functionality and 
coordinates the 
computation of the 
animation. We have 
several controllers, 
which take care of the 
different gaits or 
movements. They 
control the movements 
through key frames and 
constraints on the 
motion, which are 
defined by the 
constraint class, as 
well as through inverse 
kinematics, which is encapsulated in the ikCCD class. The quadruped itself is 
defined by the skeleton and the bodypart class. 
 
 
 
 
 
 

Figure 4: System Design
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5.2.2 Controller 

5.2.2.1 Controller Management 
Every controller in our system represents one gait or movement of our quadruped.  
 
Each controller is able to identify if it can fullfill the motion the user wants. If the 
controller recognizes the user’s sketch, no other controller will be started until the 
current controller comes to the point where it is unable to continue animating the 
motion the user wants. Until then this controller will control the motion of the 
quadruped. It will analyze the drawings the user made, extract and collect the 
needed data.  
 
When a controller recognizes that it cannot continue working with the drawing of 
the user, it will finish its work and the sketch class will try to find another 
controller. In this case all the other available controllers will try to identify the next 
part of the user’s drawing. If one of the controllers identifies the new part of the 
drawing it will go on analyzing. 
 
All controllers that identify a part of the motion sketch will be stored in a queue 
and will afterwards animate the quadruped based on the data they extracted from 
their part of the user’s input. 
 
Since all the functionality regarding with one movement is encapsulated in one 
controller it is very easy to add new controller or remove others. 

5.2.2.2 Sketch Identification and Analysis 
A controller identifies the user’s drawing based on a fairly simple algorithm. First 
we extract the direction of the mouse movement. The direction can be up, down, 
right, left or up-right, down-right, up-left, down-left.  The identification of the 
movement is based on this information and the absolute mouse position translated 
into world coordinate system.  
 
If the Y-coordinate of the mouse position (in world coordinate system) goes 
below the ground at certain points is very important. The height of the ground is 
used as a threshold to differentiate between a number of possible motions. 
Another important threshold is the so-called jump-line. We distinguish some of 
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the movements based on whether the drawn sketch goes above this line or not. 
For example an arc-like-movement starting below the zero line, going up and 
down again to zero is a jump only if it goes over the jump-line. If it stays below 
that line it is one part of a gallop. 
 
Tthe same information is handled to extract the needed data. In the case of a 
jump-like movement this can be the maximum height, the X-position where the 
maximum height is reached, the time the user needed to draw up to this point, the 
time it took to go back to zero, etc. All this data is stored in the controller until it 
is called to animate. 

5.2.2.3 Animation 
Based on the collected data the controller animates the skeleton. Most of the 
motions are based on key frames.  However, some of them may be changed to a 
high percentage by inverse kinematics. All the motion is also adjusted by applying 
several constraints that affect the movements. 
 
We will explain some of the techniques by using the jump-controller as a 
simplified example.  
 
For a jump most of the motion during the flight is based on key frames, since we 
have no ground contact. Obviously it has to be adjusted to create the correct 
angles depending on the height to length ratio of the jump. The quadruped must 
start with a much higher slope if the jump is very high. 
 
During the anticipation before the quadruped gets airborne we adjust the motion 
by using inverse kinematics. If the jump is higher the quadruped will crouch more.  
 
When the quadruped hits the ground after the jump we also have to use inverse 
kinematics. The reason for this is that most quadrupeds put their back feet close to 
the point where the front feet are. Since we might have very different legs as they 
are based on the user’s drawing we cannot rely on the key frame data. The follow-
through is also implemented by using inverse kinematics.  
 
When the front feet hit the ground we set a constraint to force them to stay at the 
same position without moving into the ground or sliding along it. When the back 
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feet touch the ground we move the constraint from the front feet to the back feet. 
From now on the foreleg is only controlled by inverse kinematics. 
 
The jump is a very good example of a movement using equal amounts of inverse 
kinematics and key frames. For a walk for example we have to use a much higher 
proportion of inverse kinematics. Actually only the tail, head, body and one leg at a 
time are controlled by key frames. All the rest is controlled by inverse kinematics. 

5.2.2.4 Key frames 
The key frames are stored as joint angles on a skeleton with 26 joints. We use four 
joints for every leg, three for the spine, four for the tail, one for the neck, one for 
the head and the root-joint. 
 
The interpolation is done using the technique Burke, Thorne and van de Panne 
used [1]. This is a Catmul-Rom interpolation [4], which uses four joint angles as 
parameters. The previous angle, the current angle to interpolate from, the next 
angle to interpolate to and the following angle. It works very well and creates 
realistic interpolations without any problems. 

5.2.2.5 Inverse Kinematics 
For the inverse kinematics we use an implementation of the cyclic coordinate 
descent method. We chose this method because it is very fast and works very well.  
 
We implemented it based on a publication by Welman [2] but adjusted it to our 
needs to make it faster. The technique works as follows: 
 
Based on the current end-effector position PC and the desired position PD as well 
as the current joint q we want to minimize an error value in the end-effector-
position, which can be described as a sum of a position error EP and an orientation 
error EO: 

)()()( qEqEqE OP +=  
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as we are not interested to set the orientation of the end-effector we only minimize 
the position error : 

2)( CDP PPqE −=  
This technique simply starts at the joint closest to the end-effector and tries to 
move it as close as possible to the desired position. This is repeated for every joint 
of the body-part. The whole process has to be repeated a few times to create good 
results.  
 
We use maximal and minimal values for each of the joints to create realistic 
movements. To make the motions more animal-like we also introduced a stiffness-
factor of 0.6, which turned out to be a good tradeoff between moving the end-
effector to the desired position while avoiding bending only the joints close to the 
end-effector. 

6 Results  
In the current version the tool is 
able to animate quadrupeds that 
move like cats. The user can 
draw a cat. The system then 
recognizes the quadruped and 
extracts a skeleton, which can be 
used to animate. 
 
The user then can draw the 
motion she wants. Currently the 
system can animate the 
following motions: stand, walk, 
jump, gallop, sit and trot.  
 
Please see figures 5 and 6 for 
examples on how each of the 
motions has to be drawn.  A 
walk (Figure 5 (a)) is simply an 
up and down movement 

(b)

(a)

Figure 5: motion doodles (a) walk (b) trot 
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between the two thresholds (ground and jmp-line). A trot (Figure 5 (b)) is a bit 
similar but the sketch has to touch the ground in the lower points. During the trot 
the feet of the cat will be placed on the points where the ground-threshold is 
touched. 
 
The cat will sit down if the 
user draws a loop like 
movement (Figure 6 (a)). A 
gallop (Figure 6 (b)) is similar 
to a trot but the distance 
between each of the lower 
points is much larger. A jump 
is an arc which goes above the 
jump-line (Figure 6 (c)).  
 
The user has to draw a series 
of one or more motions with 
the mouse or a tablet. The 
system will recognize what the 
user wants the cat to do and it 
will put the controllers, which 
can handle certain parts of the 
wanted motion, in a queue. 
Starting from the first 
controller in that queue one 
controller after the other will 
be called to animate its part.  
 
We are still working on 
connecting the character 
sketching and motion 
sketching parts in a better way. 
Both systems are working very 
well but the connection still 
needs some work. We might 
also need some adjustments 
when animating very weird 

(b)

Figure 6: motion doodles
 (a) sit down (b) gallop (c) jump 

(c)

(a)
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quadrupeds, e.g. with very long front legs and very short back legs. 
 
We are also working on bending the tail in a more realistic manner as the user can 
draw it as one ellipse, while we have 4 joints representing it. For the animation a 
good-looking tail is very important and so we will put some effort in this. 

7 Conclusion & Future Work 
We have presented a system, which enables the user to sketch and animate a cat in 
tens of seconds without any training. It is very easy to use and allows one to 
produce reasonable animations in a very small amount of time. However, in the 
current state the communication between the character sketching and the motion 
sketching part is not yet finished. We will have to make some adjustments to finish 
the work on the cat. In addition the sketching of the character is still fairly 
constrained. We would like to have a more sophisticated skeleton recognition 
algorithm to allow for more valid character drawings. 
 
A major future extension will be to allow for a number of different quadrupeds 
with their gaits. In the framework of some follow-up research work we will 
introduce a horse with its different gaits, such as a trot or a gallop. We hope to 
reuse the character sketching part with only some minor changes. The major effort 
will be in developing new controllers for the horse, whereas it is possible to 
exchange controllers with little effort due to the architecture of the animation part 
of the system. This first extension for horses will show that our system is fairly 
easy to extend for other quadrupedal creatures. 
 
Given different creatures with different gaits it would be very interesting to have 
the possibility to “mix” the creatures in order to build new creatures, such as 30%-
cat-and-70%-horse-creature. 
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