
Motion Doodles for Quadrupeds 1

Motion Doodles for Quadrupeds:
How to Draw and Animate a Cat in 15 Seconds

CPSC 533b Course Project Report

Claus Beringer
University of British Columbia

Department of Computer Science
beringer@cs.ubc.ca

Karl Matthias Hamel
University of British Columbia

Department of Computer Science
kmhamel@cs.ubc.ca

April 25th, 2003

Abstract

This paper presents a technology that enables an untrained user to draw and
animate a quadruped in tens of seconds. The system recognizes a quadruped
drawn by a user and creates a skeleton from the sketch. Following a few simple
rules the user is able to draw the movement she wants the quadruped to do. The
system will parse the sketch and interpret it to let the quadruped walk, jump, trot,
gallop or sit. To do all of this the system uses several techniques to understand the
drawings, as well as key framing, controller based animation and inverse
kinematics to animate the quadruped.

Keywords: Animation, Sketching

Motion Doodles for Quadrupeds 2

1 Introduction
This paper presents the results of a research project for the course “Algorithmic
animation” taught by Michiel van de Panne at the University of British Columbia
in 2003. The motion doodle system for human characters, i.e. bipeds, by Burke,
Thorne and van de Panne [1] inspired us for this project and is the basis of our
system. Similar to their system, ours allows the user to easily sketch and animate an
articulated character in tens of seconds, whereas we focused on quadrupeds, such
as cats and horses.

2 Motivation
The idea behind this system is to create a fast, easy to use, but still flexible and
powerful technique to build animations.

Most of the current research tries to improve the technology of animation. New
methods are found and we can animate and render things of a complexity we
never thought possible. However only a small effort is put into finding ways to
make it easier for users to create good animations.

Systems like the one we introduce in this paper can also fill the gap between
simple storyboards and animations. Even today, when a complex animation has to
be created, drawings are used to illustrate what is needed. This is done because we
do not have animation systems which are capable of building a good and flexible
animation in a short time and an easy way.

Most of the existing animation systems can only be used by trained users and it is
even more unthinkable to let a child create a good animation. Children love to
draw, it strengthens their imagination and thus it would be good to allow them to
animate what they draw. However, to let this happen we need very easy to use
animation tools.

Based on these ideas Burke, Thorne and van de Panne introduced a system [1]
they called “Motion Doodles”, which enables a user to draw a biped character and
animate it in 10 to 20 seconds.

Motion Doodles for Quadrupeds 3

The system we introduce in this paper is based on their work. The next step after
being able to animate bipeds is to animate different characters, especially
quadrupeds. This step makes sense, since most mammals are quadrupeds. It is also
very interesting to see if the different gaits and forms of motion the quadrupeds
on our planet developed are transferable to a system like this.

Thus, we want to make it possible for a user to draw and then animate different
quadrupeds in a fast and easy way.

3 Related Work
This project is based on the work of Burke, Thorne and van de Panne [1], which
they presented at UBC’s Imager-Lab-meeting. We reused several parts of their
character recognition system, especially low-level methods, as well as the basic
architecture of their approach.

In the field of computer vision there has been a lot of research in recognition of
human drawings. However, the approach was very different and the aim was to
understand human drawings in a very general way. A brief overview on this is
given in [7] by Randall Davis.

In Computer Animation there is a lot of work on key framing techniques and
controller based animation. A framework to combine and manage different
controllers for physics based animation is described in Composable Controllers for
Physics-Based Character Animation by Faloutsos, P. et al. [6].

For papers connected to our inverse kinematics solver we refer to Chris Welman’s
Inverse Kinematics and Geometric Constraints for Articulated Figure Manipulation [2], which
describes the method we implemented.

4 Approach
In the current approach we concentrate on a single quadruped. As a first
specification of a quadrupedal creature we chose the cat because it is fairly easy for
an average user to imagine. There is however one problem in the development of
a system for quadrupeds: humans don’t intuitively know how animals are built,

Motion Doodles for Quadrupeds 4

and unfortunately very often a number of things (e.g. fur) makes it hard to find out
about the animal’s skeleton. Since for humans it is much harder to imagine the
physique of a (quadrupedal) animal compared to that of a human, we had to put
extra effort in the development of a representation which is authentic compared to
a real animal, but also applicable.

Thus, on the one hand we analyzed appropriate anatomy literature and photos of
Eadweard Muybridge [9] of cats. On the other hand we also asked numerous
people to draw cats – at the beginning without any constraints. Later we merged
the gathered information and developed some loose constraints, such as the
number of strokes allowed for drawing the cat. Finally, we came up with a fairly
good representation that requires only a few basic constraints.

The developed system comprises two major parts, one for sketching the character
and one for the motion sketching which takes also care of all computations for the
animation.

4.1 Character Sketching
The user sketches the quadruped in a 2D-side-view using 12 ellipsoidal figures,
comprising the head, neck, torso, upper foreleg, lower foreleg, heel and toes on
the foreleg, upper rear leg, lower rear leg, heel and toes on the rear leg, and finally
the tail, where the sketch has to satisfy certain constraints. Additionally, the user
might add some annotations to the body parts. From the sketch we infer the joints
of the articulated character. In the next step we identify the different body parts,
such as the torso or the tail, and then build the skeleton from this information.
The sketched body parts are assigned to the corresponding skeleton parts. The
skeleton data is then passed to the motion sketching / animation part of the
system.

4.2 Motion Sketching
The user draws strokes (arcs and a loop), which are recognized and interpreted.
The more or less abstract, but intuitive sketches specify the type of motion, the
timing as well as the start and respective end points of the motion. For example, a
long and high arc will be interpreted as a jump of the height and the length of the
arc. The computation of the motion, i.e. the joint angles of the limbs, is based on a
pool of controllers, one for each type of motion, such as a normal walking step or

Motion Doodles for Quadrupeds 5

a leap. The controllers themselves work based on key frames and an inverse
kinematics system.

5 Implementation
Our system includes two core components: the character sketching and the
motion sketching. First, we will concentrate on the character sketching part. Since
our system is based on the one of Burke et al. [1], and a number of lower level
functions are taken from there, we describe some parts in less detail. For more
detail on these parts the reader is referred to [1].

5.1 Character Sketching
The creation of the articulated character starts with the drawing by the user. She
sketches 12 links, comprising the head, neck, torso, upper foreleg, lower foreleg,
heel and toes of the foreleg, upper rear leg, lower rear leg, heel and toes of the rear
leg, and the tail. Each link is defined by one continuous stroke and the order in
which the user draws the links is not important. However, there are some
constraints for the location and orientation. The cat must be drawn facing the
right side of the screen, and the tail must be the most left link and the head the
most right link. A “normal” standing pose is also mandatory. An example can be
seen in Figure 1 (a). The abovementioned assumptions were necessary in order to
ensure a correct recognition. In contrast to the human character in [1] for the
quadruped several issues occur that make it necessary to constraint the sketch at
this stage.

Once the character is sketched, the system automatically infers the joint locations
and identifies the body parts. After having created the second foreleg and rear leg,
the system finally builds the skeleton with the sketches assigned to the
corresponding bones.

Motion Doodles for Quadrupeds 6

5.1.1 Inferring the Joints and the different Body Parts
When the user draws, each
continuous stroke is recognized
as one link. Due to the required
constraints and the facts we
know about the connectivity of
the links, it is easy to identify the
body parts and infer the
skeleton.
Once a link is drawn the
principal axes are computed (see
Figure 1 (b)) and an oriented
bounding box is fitted to the
link (see Figure 1 (c)).
Once 12 links are drawn, the
system determines the joints and
with it the connections of the
links. For the major axis’
endpoints of each link the
algorithm finds the closest link
by computing the Euclidean
distance to every point of the
other links. When the closest
link is identified the joint
location is computed as the
geometric intersection between
the major axes of the two links.
If the angle between the axes is
less than 20°, i.e. they are almost
parallel, the joint is computed as
the midpoint of the line
connecting the endpoints of the
major axes of the two bounding
boxes. Otherwise the joint
would be too far away from a
reasonable position.

Figure1: Inferring the skeleton from the sketch
 (a) sketched cat (b) principal axes

(c) bounding boxes

(a)

(b)

(c)

Motion Doodles for Quadrupeds 7

The neck joint and the tail joint
first are situated on the torso
bone. To achieve a more
authentic joint position and
motion behavior of the cat they
are moved to the closest end
point of the major axis of the
corresponding link, i.e. neck and
tail (see Figure 2 (a)).

When all joints are determined
and are assigned to the links, we
identify the body parts. From
the required constraints we can
identify the most right link as
the head and the most left link
as the tail. The neck is the only
link connected to the head. The
torso is identified as the highest
link, which is not one of the
links head, neck or tail. The rear
leg and the foreleg are
distinguished through their
relative location. And finally the
different parts of the legs are
identified by the implied connectivity (upper part-> lower part-> heel-> toes).

The pseudocode of the algorithm is shown in Figure 3. In some parts it is fairly
similar to the one of Burke et al. [1].

5.1.2 Building the Skeleton
The bones of the representative skeleton are built by connecting the pertinent
joints. Thus, for example, the upper fore leg bone will be built connecting the hip
and the knee. However, there are exemptions. The bones for the body parts,
which do not have two joints, are computed as the line from the one joint to the
furthest endpoint of the sketched link.

Figure 2: (a) joint locations (b) inferred skeleton

(a)

(b)

Motion Doodles for Quadrupeds 8

When the skeleton is built, the torso and the tail are broken into parts, which
introduces two new joints in the torso, between the lower and the mid spine, and
between the mid and the upper spine, and three new joints in the tail. These joints
are added at fixed fractions of the bone and allow for the bending of these parts of
the articulated character.

In addition to the regular bones there are two fake bones created, connecting the
neck with the upper spine, and the tail with the lower spine. They work as internal
connections to complete the skeleton so that all bones are bonded. Finally, adding
a second foreleg and rear leg completes the skeletal structure.

The current approach works fairly well even though it fails for weird drawings of
cats, e.g. a X-legged cat, or if the pose is totally different from the required one.
However, the algorithm gives reasonable results considering the assumptions that
are made.

5.1.3 Adding Annotations
The first sketch of the quadruped is fairly simple with little detail. This is exactly
what makes the system so easy and quick to use. Nevertheless, one might want to

1. For each sketched link
2. Compute the principal axes and fit an oriented bounding
 box to the link
3. For each link i
4. For each major axis endpoint on link I, Pi1 and Pi2
5. Go over all links j != i, find the closest point Pj
6. If major axes of links are not parallel
7. create joint Jn at geometric intersection of
 major axes of i and j
8. else
9. create joint Jn at midpoint of line PiPj
10. identify head, neck and tail applying the constraints
11. move head joint and tail joint
12. identify torso as highest which is not head, neck or tail
13. build skeleton
14. create second foreleg and rear leg parts

Figure 3: Pseudocode for recognition of skeletal structure

Motion Doodles for Quadrupeds 9

add more details. In the present state, it would be nice, for example, to add some
fur to the cat or design the head with ears etc. Our system allows that after the 12
links are drawn. The user can sketch further figures that are bound to the closest
link and are animated as if they were parts of the link.
The possibility to add various kinds of annotations also enhances the applicability
of our tool. So we take a step closer to replacing the manual storyboard used for
animations and films.

5.2 Motion Sketching
The second part of the system is responsible for the motion of the character. This
includes all the motion sketching and the computation while the resulting
animation is afterwards displayed in the other part.

After having received the skeleton data, this part of the system tracks the mouse
input of the user. Her sketches are identified and the needed motions are built.
The resulting poses of the quadruped are created and send to the other part of the
system, where the drawn body-parts are fitted back on the skeleton and displayed.

The movement the user wants has to be interpreted and the data extracted out of
the drawing. Based on this information the correct motion has to be created. This
is done by using key framing in combination with an inverse kinematics solver and
constraints.

We will first describe the system design, then explain the controller technology and
the key framing and finally talk about the inverse kinematics system.

5.2.1 System Design
The architecture of this system is, as mentioned before, based on the biped-system
of Burke, Thorne and van de Panne [1]. We decided to reuse their basic structure
but to change it, to make it more flexible and to decrease the coupling.

Motion Doodles for Quadrupeds 10

In Figure 4 we present
an overview on the
architecture.

The qpFacade class
encapsulates the whole
part of the system from
the character sketching
part. All communication
between the two parts
go through this class.
Sketch is responsible
for the main
functionality and
coordinates the
computation of the
animation. We have
several controllers,
which take care of the
different gaits or
movements. They
control the movements
through key frames and
constraints on the
motion, which are
defined by the
constraint class, as
well as through inverse
kinematics, which is encapsulated in the ikCCD class. The quadruped itself is
defined by the skeleton and the bodypart class.

Figure 4: System Design

Motion Doodles for Quadrupeds 11

5.2.2 Controller

5.2.2.1 Controller Management
Every controller in our system represents one gait or movement of our quadruped.

Each controller is able to identify if it can fullfill the motion the user wants. If the
controller recognizes the user’s sketch, no other controller will be started until the
current controller comes to the point where it is unable to continue animating the
motion the user wants. Until then this controller will control the motion of the
quadruped. It will analyze the drawings the user made, extract and collect the
needed data.

When a controller recognizes that it cannot continue working with the drawing of
the user, it will finish its work and the sketch class will try to find another
controller. In this case all the other available controllers will try to identify the next
part of the user’s drawing. If one of the controllers identifies the new part of the
drawing it will go on analyzing.

All controllers that identify a part of the motion sketch will be stored in a queue
and will afterwards animate the quadruped based on the data they extracted from
their part of the user’s input.

Since all the functionality regarding with one movement is encapsulated in one
controller it is very easy to add new controller or remove others.

5.2.2.2 Sketch Identification and Analysis
A controller identifies the user’s drawing based on a fairly simple algorithm. First
we extract the direction of the mouse movement. The direction can be up, down,
right, left or up-right, down-right, up-left, down-left. The identification of the
movement is based on this information and the absolute mouse position translated
into world coordinate system.

If the Y-coordinate of the mouse position (in world coordinate system) goes
below the ground at certain points is very important. The height of the ground is
used as a threshold to differentiate between a number of possible motions.
Another important threshold is the so-called jump-line. We distinguish some of

Motion Doodles for Quadrupeds 12

the movements based on whether the drawn sketch goes above this line or not.
For example an arc-like-movement starting below the zero line, going up and
down again to zero is a jump only if it goes over the jump-line. If it stays below
that line it is one part of a gallop.

Tthe same information is handled to extract the needed data. In the case of a
jump-like movement this can be the maximum height, the X-position where the
maximum height is reached, the time the user needed to draw up to this point, the
time it took to go back to zero, etc. All this data is stored in the controller until it
is called to animate.

5.2.2.3 Animation
Based on the collected data the controller animates the skeleton. Most of the
motions are based on key frames. However, some of them may be changed to a
high percentage by inverse kinematics. All the motion is also adjusted by applying
several constraints that affect the movements.

We will explain some of the techniques by using the jump-controller as a
simplified example.

For a jump most of the motion during the flight is based on key frames, since we
have no ground contact. Obviously it has to be adjusted to create the correct
angles depending on the height to length ratio of the jump. The quadruped must
start with a much higher slope if the jump is very high.

During the anticipation before the quadruped gets airborne we adjust the motion
by using inverse kinematics. If the jump is higher the quadruped will crouch more.

When the quadruped hits the ground after the jump we also have to use inverse
kinematics. The reason for this is that most quadrupeds put their back feet close to
the point where the front feet are. Since we might have very different legs as they
are based on the user’s drawing we cannot rely on the key frame data. The follow-
through is also implemented by using inverse kinematics.

When the front feet hit the ground we set a constraint to force them to stay at the
same position without moving into the ground or sliding along it. When the back

Motion Doodles for Quadrupeds 13

feet touch the ground we move the constraint from the front feet to the back feet.
From now on the foreleg is only controlled by inverse kinematics.

The jump is a very good example of a movement using equal amounts of inverse
kinematics and key frames. For a walk for example we have to use a much higher
proportion of inverse kinematics. Actually only the tail, head, body and one leg at a
time are controlled by key frames. All the rest is controlled by inverse kinematics.

5.2.2.4 Key frames
The key frames are stored as joint angles on a skeleton with 26 joints. We use four
joints for every leg, three for the spine, four for the tail, one for the neck, one for
the head and the root-joint.

The interpolation is done using the technique Burke, Thorne and van de Panne
used [1]. This is a Catmul-Rom interpolation [4], which uses four joint angles as
parameters. The previous angle, the current angle to interpolate from, the next
angle to interpolate to and the following angle. It works very well and creates
realistic interpolations without any problems.

5.2.2.5 Inverse Kinematics
For the inverse kinematics we use an implementation of the cyclic coordinate
descent method. We chose this method because it is very fast and works very well.

We implemented it based on a publication by Welman [2] but adjusted it to our
needs to make it faster. The technique works as follows:

Based on the current end-effector position PC and the desired position PD as well
as the current joint q we want to minimize an error value in the end-effector-
position, which can be described as a sum of a position error EP and an orientation
error EO:

)()()(qEqEqE OP +=

Motion Doodles for Quadrupeds 14

as we are not interested to set the orientation of the end-effector we only minimize
the position error :

2)(CDP PPqE −=
This technique simply starts at the joint closest to the end-effector and tries to
move it as close as possible to the desired position. This is repeated for every joint
of the body-part. The whole process has to be repeated a few times to create good
results.

We use maximal and minimal values for each of the joints to create realistic
movements. To make the motions more animal-like we also introduced a stiffness-
factor of 0.6, which turned out to be a good tradeoff between moving the end-
effector to the desired position while avoiding bending only the joints close to the
end-effector.

6 Results
In the current version the tool is
able to animate quadrupeds that
move like cats. The user can
draw a cat. The system then
recognizes the quadruped and
extracts a skeleton, which can be
used to animate.

The user then can draw the
motion she wants. Currently the
system can animate the
following motions: stand, walk,
jump, gallop, sit and trot.

Please see figures 5 and 6 for
examples on how each of the
motions has to be drawn. A
walk (Figure 5 (a)) is simply an
up and down movement

(b)

(a)

Figure 5: motion doodles (a) walk (b) trot

Motion Doodles for Quadrupeds 15

between the two thresholds (ground and jmp-line). A trot (Figure 5 (b)) is a bit
similar but the sketch has to touch the ground in the lower points. During the trot
the feet of the cat will be placed on the points where the ground-threshold is
touched.

The cat will sit down if the
user draws a loop like
movement (Figure 6 (a)). A
gallop (Figure 6 (b)) is similar
to a trot but the distance
between each of the lower
points is much larger. A jump
is an arc which goes above the
jump-line (Figure 6 (c)).

The user has to draw a series
of one or more motions with
the mouse or a tablet. The
system will recognize what the
user wants the cat to do and it
will put the controllers, which
can handle certain parts of the
wanted motion, in a queue.
Starting from the first
controller in that queue one
controller after the other will
be called to animate its part.

We are still working on
connecting the character
sketching and motion
sketching parts in a better way.
Both systems are working very
well but the connection still
needs some work. We might
also need some adjustments
when animating very weird

(b)

Figure 6: motion doodles
 (a) sit down (b) gallop (c) jump

(c)

(a)

Motion Doodles for Quadrupeds 16

quadrupeds, e.g. with very long front legs and very short back legs.

We are also working on bending the tail in a more realistic manner as the user can
draw it as one ellipse, while we have 4 joints representing it. For the animation a
good-looking tail is very important and so we will put some effort in this.

7 Conclusion & Future Work
We have presented a system, which enables the user to sketch and animate a cat in
tens of seconds without any training. It is very easy to use and allows one to
produce reasonable animations in a very small amount of time. However, in the
current state the communication between the character sketching and the motion
sketching part is not yet finished. We will have to make some adjustments to finish
the work on the cat. In addition the sketching of the character is still fairly
constrained. We would like to have a more sophisticated skeleton recognition
algorithm to allow for more valid character drawings.

A major future extension will be to allow for a number of different quadrupeds
with their gaits. In the framework of some follow-up research work we will
introduce a horse with its different gaits, such as a trot or a gallop. We hope to
reuse the character sketching part with only some minor changes. The major effort
will be in developing new controllers for the horse, whereas it is possible to
exchange controllers with little effort due to the architecture of the animation part
of the system. This first extension for horses will show that our system is fairly
easy to extend for other quadrupedal creatures.

Given different creatures with different gaits it would be very interesting to have
the possibility to “mix” the creatures in order to build new creatures, such as 30%-
cat-and-70%-horse-creature.

8 Acknowledgements
We want like to thank Dave Burke, Matthew Thorne and Michiel van de Panne for
their help and their kindness to allow our project to be based on their work. This
project would otherwise not have been possible in the amount of time available.

Motion Doodles for Quadrupeds 17

9 References
[1] Burke, D., Thorne, M., van de Panne, M., Motion Doodles: A Sketching Interface for
Character Animation. not published

[2] Welman, C., Inverse Kinematics and Geometric Constraints for Articulated Figure
Manipulation. http://fas.sfu.ca/pub/cs/theses/1993/ChrisWelmanMSc.ps.gz
B.Sc, SFU, 1989

[3] Thorne, M., CPSC 533B Course Project - An Inverse Kinematics System.
http://www.cs.ubc.ca/~mthorne/cpsc533project.html

[4] Catmull, E., Rom, R. A class of local interpolating splines. Computer Aided
Geometric Design, R. E. Barnhill and R. F. Reisenfeld, Eds. Academic Press, New
York, 1974, pp. 317–326

[5] Dunlop, R., Catmull-Rom Splines., last edited 5/21/2002
http://www.mvps.org/directx/articles/catmull/

[6] Faloutsos, P., van de Panne, M., Terzopoulos, D., Composable Controllers for
Physics-Based Character Animation. Siggraph 2001

[7] Davis, R., Position Statement and Overview: Sketch Recognition at MIT. Submitted to
2002 AAAI Spring Symposium on Sketch Recognition

[8] Schneider, P, Phoenix: An Interactive Curve Design System Based on the Automatic
Fitting of Hand-Sketched Curves. MS Thesis University of Washington, 1988

[9] Muybridge, E., Animales in Motion Edited by Brown, L. S., Dover Publications,
Inc. New York

