
Polymorphic Pixels

Robin Dunlop David Callele

Department of Computer Science
University of Saskatchewan

Abstract
We present an alternative to traditional texture com-

pression techniques whereby a clear data channel is em-
bedded within a texture using steganographic techniques.
The resulting pixels are polymorphic – they can be used
without decompression and the embedded data can be ex-
tracted and used for alternative purposes. The technique
has fewer degenerate cases than DXT, does not suffer
from high-frequency artifacts, but has lower compression
ratios.

Key words: Steganography, compression, polymorphism

1 Introduction

Media assets such as textures require significant storage
space and communications channel bandwidth. Com-
pression techniques can reduce these requirements at the
cost of runtime data decompression.

Based on earlier work by Callele [1], we present an
alternative to traditional compression that uses stegano-
graphic techniques to embed an alternate data stream
within a texture. The texture data is then used for mul-
tiple purposes at runtime – each pixel is polymorphic.

2 Background

Image compression techniques such as DXT [2] assume
that the original image exhibits sufficiently strong spa-
tial locality that the image can be compressed on a lo-
cal basis. DXT achieves a 6:1 compression ratio on a 4
by 4 texel region of a 24-bit RGB image by representing
the maximum and minimum values in the texel region
by 16-bit (5-6-5) approximations and quantizing each re-
gion member to one of 4 levels. When the image is de-
compressed, it is effectively converted to a 16-bit (5-6-5)
approximation to the original image. Concatenating the
5-6-5 result with the output of a noise function to achieve
an 8-8-8 result approximates natural noise and reduces
banding artifacts. If the original image does not exhibit
strong spatial locality then significant artifacts can be in-
troduced. While these high-frequency artifacts can some-
times be reduced by adding noise to the original image
beforecompression, the tradeoff between noise and fi-
delity may not be acceptable and the image may not com-

press satisfactorily using this technique.
Reconstituting the least significant bits of the original

image with the output of a noise function has a parallel in
steganography [3]. One form of steganography hides in-
formation (such as a digital watermark) within an image
by replacing some number of the least significant bits in
the original image with the information to be hidden. The
hidden information is embedded in the original image as
if it were a noise function.

Both DXT decompression and steganography add
noise to the image. The viewer usually perceives this
noise as adding complexity to the image. In the absence
of a priori knowledge, a reference image, or large–scale
artifacts (e.g.banding), it is difficult for a viewer to iden-
tify the noise as errors.

3 Polymorphic Pixels

We illustrate techniques for converting a texture to poly-
morphic pixels by way of two examples. In both exam-
ples, error minimization is performed by comparing the
original image to the modified image on a per-texel basis.

For each color channel in a texel, letM be the most
significant bits of the original image,L the least signifi-
cant bits of the original image,E the bits to be embedded
by replacingL, andM ′ the most significant bits of the
final image. Letm be the length (in bits) ofM andM ′,
l be the length ofL, ande the length ofE. Let ◦ be
the concatenation operator such thatM ◦L represents the
concatenation of the bits in the original image.

The algorithm for embedding an arbitrary bit pattern in
a channel of an RGB image can be stated as follows.

M ′ = M
If((M ◦ L)− (M ◦ E)) > 2e−1

M ′ = M + 1
If((M ◦ L)− (M ◦ E)) < −2e−1

M ′ = M − 1
FinalChannelV alue = M ′ ◦ E

The mapping used in Figure 1(e), between the bits to
be embeddedb and the texel bits in each channel, is as
follows:



Figure 1: Sample Results

b7 b6 b5 b4 b3 b2 b1 b0

R2 R1 R0 G1 G0 B2 B1 B0

Alternatively, two imagesA andB can be embedded
in each other (mutually embedded) by creating a 4-4-4
representation of each image then compositing the result
in either format as shown. Error minimization is applied
and the image in the least significant bits can be extracted
by mirroring the bits in each channel.

B7 B6 B5 B4 A4 A5 A6 A7

A7 A6 A5 A4 B4 B5 B6 B7

4 Results

Figure 1 illustrates sample results. Subimages (a) and
(b) are 24-bit master images, (c) is an 8-bit version of
(b). Subimage (d) is the error after compressing and de-
compressing (a) using DXT; the image has been post-
processed to enhance the results for print. Subimage (e)
is the result of embedding (c) in (a) using a 3-2-3 em-
bedding; (f) is the post-processed error in (e) compared
to (a). Subimages (g) and (h) are the result of mutually
embedding (a) and (b). Qualitatively, all images appear
satisfactory.

5 Conclusions and Future Work

The benefits of this technique include greater image fi-
delity than DXT with a computationally simpler algo-

rithm. The images can be used as they are at runtime,
there is no need to perform a decompression phase (the
embedded data can be extracted with bitmasks and con-
catenation operations). There are fewer degenerate cases
and the technique does not suffer from high-frequency
artifacts. The technique can be implemented on current
generation GPUs via texture lookup tables and on next-
generation GPUs directly in code. Though the examples
shown illustrate embedding one texture in another, the
embedded data can be used for any purpose.

The drawbacks of this technique include lower com-
pression than DXT, reducing storage and bandwidth sav-
ings. Managing the combined data adds another level of
complexity to the rendering pipeline.

Acknowledgements

Our thanks to nVIDIA for their support of our research.

References

[1] David Callele. Unpublished manuscript: Real-time
Displacement Mapping, 2000.

[2] Microsoft Corporation. DirectX SDK Documenta-
tion. Microsoft Corporation, 2005.

[3] F. Petitcolas, R.J. Anderson, and M.G. Kuhn. Infor-
mation hiding: A survey.Proceedings of the IEEE,
87(2):1062–1078, July 1999.


	Introduction
	Background
	Polymorphic Pixels
	Results
	Conclusions and Future Work

