
Unit 2
Object-Oriented Programming

with C++

Overview of Object-Oriented Programming
C++ Classes
Constructors
Pointers and Dynamic Objects
Destructors
Overloading Operators
Conversion Operators
Memory Organization
Dynamic Memory Allocation
Input/Output

Unit 2- OO Programming 2

Object-Oriented Programming (OOP)

Programs are collections of objects
Computation is done by sending messages to objects
Objects have 3 characteristics

state
behavior
identity

Example: bank accounts state: id, name, balance
behaviour: deposit, withdraw, etc.
identity: Joe's account is similar but different than Jane's

A class is a group of objects with the same behavior and representation.
A class defines an abstract data type

– it defines the state variables and operations (methods) for its objects.
A class may inherit characteristics from ancestor classes.
Objects are instances of classes.

Fundamental characteristics of OOP languages are:
encapsulation
instantiation
inheritance
polymorphism

Unit 2- OO Programming 3

C++ Classes
A class declaration or signature consists of:

class name
declarations of private members (data and operations)
declarations of public members (data and operations)

A class definition consists of:
a class declaration, and
definitions of the member functions (operations)

It is customary to treat a class as a module, splitting its definition is a
specification and implementation files

The specification or header file of a class X
contains the class declaration
is named X.h
.

The implementation or source file of a class X
contains the definitions of the member functions
is,named X.cpp or X.C .

Any file that uses X can include X.h.

Unit 2- OO Programming 4

Example: Class Point, Header File
// file: Point.h
// Point class header

#ifndef POINT_H
#define POINT_H

class Point

// The Point class defines a point on the
Cartesian plane in terms of x and

// y coordinates. The class has both a default
and parameterized

// constructors.

// Class Invariants:
// - The coordinates of a Point are always

defined
// - getX() and getY() always return a value

{
public:

Point();
// Default constructor
// PRE: None
// POST: A new Point object is created with (

0, 0) as its coordinates

Point(double x1, double y1);
// Parameterized constructor
// PRE: x1 and y1 are two valid doubles.
// POST: A new Point object is created with (

x1, y1) as its coordinates

double getX() const;
// Accessor member function
// PRE: None
// POST: The current X coordinate is returned

double getY() const;
// Accessor member function
// PRE: None
// POST: The current Y coordinate is returned

double distanceFromOrigin() const;
// Accessor member function
// PRE: None
// POST: The distance to the origin is returned
// Library facilities used: sqrt() from cmath

#endif

Unit 2- OO Programming 5

Class Point, Header File (cont’)
Point translate(double xDistance, double

yDistance) const;
// Accessor member function
// PRE: xDistance and yDistance are the

horizontal and vertical
// displacements.
// POST: A Point located at the result of the

translation is returned

void print() const;
// Accessor member function
// PRE: None
// POST: The current coordinates of the Point

is printed
// Library facilities used: cout object and

operator<< from iostream

private:

double x; // x coordinate
double y; // y coordinate

};

Unit 2- OO Programming 6

Class Point, Source File
// file: Point.cpp
// Point class source

#include <iostream> // used in print()
#include <cmath> // used in

distanceFromOrigin()
#include "Point.h"
using namespace std;

// Note: This module uses the sqrt() function in
the math library.

// So when producing a final executable file
using this module,

// the math library must be linked in.

Point::Point()
// Default constructor
// PRE: None
// POST: A new Point object is created with (0,

0) as its coordinates
{

x = 0;
y = 0;

}

Point::Point(double x1, double y1)
// Parameterized constructor
// PRE: x1 and y1 are two valid doubles.
// POST: A new Point object is created with (x1,

y1) as its coordinates
{

x = x1;
y = y1;

}

double Point::getX() const
// Accessor member function
// PRE: None
// POST: The current X coordinate is returned
{

return x;
}

Unit 2- OO Programming 7

Class Point, Source File (cont’d)
double Point::getY() const
// Accessor member function
// PRE: None
// POST: The current Y coordinate is returned
{

return y;
}

double Point::distanceFromOrigin() const
// Accessor member function
// PRE: None
// POST: The distance to the origin is returned
// Library facilities used: sqrt() from cmath
{

return sqrt(x * x + y * y);
}

Point Point::translate(double xDistance, double
yDistance) const

// Accessor member function
// PRE: xDistance and yDistance are the

horizontal and vertical displacements.
// POST: A Point located at the result of the

translation is returned

{
double a;
double b;

a = x + xDistance;
b = y + yDistance;

return Point(a, b);
}

void Point::print() const
// Accessor member function
// PRE: None
// POST: The current coordinates of the Point is

printed
// Library facilities used: cout object and

operator<< from iostream
{

cout << "(" << x << ", " << y << ")";
}

Unit 2- OO Programming 8

Using the Point class
Now, Point can be used as a new type:

Point p;
Point q(2,3);

double a = 1;
a = p.x; // Error
p.x = a; // Error

a = p.getX() // a becomes 0
p.print() // prints: (0,0)
q.print() // prints: (2,3)

a = (p.translate(5,10)).getX() // a is 5
Note:

Objects of a class are initialized by the class constructors or initializers.
Private members are only accessible inside the class definition.
Public operations (methods) are applied to an object

i.e. p.print
This object is the implicit argument of the operation.
A const at the end of the function header means the implicit argument is not
modified.

Unit 2- OO Programming 9

Constructors (or Initializers)
Constructors are special operators used to initialize an object.
Are not real functions:

have the same name as the class
are not called explicitly
do not have a return type

A class may have multiple constructors (with different arguments)
Constructors of a class X are invoked when

a variable of class X is declared i.e.
Point p;
Point q(2,3);

a temporary object is created; i.e.
a = Point(3,4);
return Point(2,3);

a function with a parameter X is called
i.e. suppose distance is a function calculating the distance between two points

a = distance(p, q)
a function returning X returns, i.e.

p.translate(5,10);
a variable with a member X is initialized.

Unit 2- OO Programming 10

Class Invariants
Special assertions that are true by any member of the class

They are denoted by Class Invariants:
in the design of the class, or
as a comment at the beginning of the header file for the class

For any class:
a constructor
~ must satisfy the Class Invariants upon its return
a member function

– assumes that Class Invariants are true at invocation
– must ensure that Class Invariants are true upon its return

Example: The design for the Point class should contain the
following class invariant.

The coordinates of any point are always defined.
OR
getx and gety always return a value

Unit 2- OO Programming 11

Pointers and Dynamic Data
A pointer is a variable whose value is the memory address of another data
structure.

A pointer declaration:
<type>* <variable>

E.g.
int *ip, *iq;
Point* pp;

Note:
The type of pp is pointer to Point.
The declaration allocates space for pp, but not for any point.

Functions can also return pointer values.
i.e. int* f(int x)

f returns an address of an integer.

C and C++ permit a variety of operations on pointers including
dereference
pointer arithmetic

Unit 2- OO Programming 12

The operators * and &
Are used to manipulate pointers:

* is the dereference or indirection operator
– used to dereference a pointer value.

& is the address-of operator
– gives the address of an object.

Example: Demonstrating the use of * and &.
int x, y;
int* ip;

x = 2;
y = 3;
ip = &x; // ip points to x now
y = *ip; // the value of y is now 2
*ip = 0; // the value of x is now 0
(*ip)++; // the value of x is now 1

The address of an object cannot be changed.
&x = &y is not permitted.

& is used to pass the address of a parameter to a function.

Unit 2- OO Programming 13

Notation we Use with Pointers
Consider the following declarations:

Declaration Address Memory cells Name

int x = 5; 3000 x

int y = 10 5000 y

int * p; 5000 p

When we execute
p = &x;

3000 is placed in the memory slot for p
We say that p points to x and we show it :

5

10

5
p x

Unit 2- OO Programming 14

Example Using * and &
To swap the values of two integer variables we can
define the function
void swap (int *a, int *b)

{

int temp;

temp = *a;

*a = *b;

*b = temp;

}

Suppose x and y are defined as
int x = 5, y = 10;

To swap them we can call
swap(&x, &y);

Unit 2- OO Programming 15

References and Pointers

A variable can be declared to be a reference to type:

<type>& <variable>

i.e.

int i;

int& p = i; // p is an alias of the integer object i

A reference is another name for the location it refers to.

i.e. in the previous example i and p are names of the same location
p = 5;

causes i to be 5.

References are usually used for parameter passing .

Unit 2- OO Programming 16

Example with References

The swap function can be written as:
void swap(int& a, int& b)
{

int temp;
temp = a;
a = b;
b = temp;

}
Then if we have declare

int x = 5, y=10;
we can swap them by calling

swap(x, y);

Unit 2- OO Programming 17

Dynamic Data

C++ has three kinds of data:
automatic data - allocated, deallocated automatically

static data - exists throughout the program

dynamic data - allocated, deallocated by the programmer

We’ll discuss how dynamic data are allocated and
deallocated.

Unit 2- OO Programming 18

Allocation of Dynamic Data
When the new operator is applied to a constructor,

an object of the class is generated

the address of the object is returned

Example:

int* ip, *ap;

ip = new int;

ap = new int[50];

Point * r, *s;
r = new Point(3,4);
s = new Point[20];

The last example calls Point()

with each s[i] (i = 0 to 19).

Unit 2- OO Programming 19

Deallocation of Dynamic Data

When the delete operator is applied to a pointer that
points to a dynamic object, it frees the space the pointer
points to

The pointer is then considered unassigned.

Example:
delete ip;
delete [] ap;

Good Idea:
After deleting the space, set the pointer to NULL.

If the address (pointer value) is NULL and apply delete
to it, nothing happens.

Unit 2- OO Programming 20

Destructors

The destructor for a class X is a method with name ~X().
It has no arguments and no return type.
It cannot be called; it is invoked by the system.

The destructor ~X is invoked:
at the end of the scope of a variable of type X
when delete is applied to a variable of type X*
at the end of a function with an argument of type X
to destroy temporaries after their use
when a variable with an X member is deleted.

When the delete operator is applied to a pointer, it
invokes the destructor of the class first
then recycles the storage pointed to by the pointer.

If p is an array of n objects of class X, then
delete [] p ;
applies the destructor of X to each element of the array p
then deletes the array p itself.
A destructor is needed for composite objects that contain dynamic data
For simple objects like Point, it is not necessary.

Unit 2- OO Programming 21

Example: Integer Vector

An implementation of arrays of integers that
check for out-of-range condition

can be assigned.

The code can be found in the examples in following files:

IntVector Class Header File
IntVector Class Source File
IntVector Class Test Driver

Note:

The destructor has to deallocate all the dynamic data
allocated by the member functions.

Unit 2- OO Programming 22

Copy Constructors (or Copy Initializers)
A copy initializer for a class C is a constructor of the form

C(const C&)
It is used automatically when copying occurs.
Copying an object occurs

at an assignment
at initialization
passing arguments (by value)
returning values from a function

In the first case, the assignment operator is used.
In the rest, the copy constructor is used.

If no constructor is defined, the system performs a shallow copy
(or memberwise copy):

only the top members of the object are copied

If the object has dynamic members
a deep copy is required
a copy constructor and an assignment operator must be defined

Unit 2- OO Programming 23

Shallow vs. Deep Copy
Suppose we execute

IntVector a(5,10);
IntVector b = a;

Unit 2- OO Programming 24

Example: Copy Constructor for IntVector
class IntVector
{
public:

IntVector();
// Default constructor

IntVector(int l, int h);
// Parameterised constructor

IntVector(const IntVector&
someVector);

// Copy constructor
….
private:

int* value; // Pointer to a dynamically-
allocated array of integers

int low; // the lower index bound
int high; // the upper index bound

void copy(const IntVector& someVector);
// Helper function used by copy constructor

}

IntVector::IntVector(const IntVector& someVector)
// Copy constructor

{
copy(someVector);

}

void IntVector::copy(const IntVector& someVector)

// Private member helper function that copie
// the contents of IntVector
// 'someVector' into the current IntVector

{
low = someVector.low;
high = someVector.high;
value = new int[high - low + 1];

for (int i = 0; i <= high - low; i++)
{

value[i] = someVector.value[i];
}

}

Unit 2- OO Programming 25

Friends
If we want a function or method f defined outside a class C to have access to the
private members of C, we declare (in class C) f to be a friend of C.

Example: Function Friend
Declaring distance function to be a friend of Point:

class Point {
friend double distance(Point, Point);
....

}
…
double distance(Point a, Point b) {

return sqrt((a.x - b.x)*(a.x - b.x) + (a.y - b.y)*(a.y - b.y));
}

A class A can also declare another class B to be a friend.
B can then access the private members of A.

Example: Class Friend
If we want the class Triangle to have access to Point we define:

class Point
{

friend class Triangle;
.....

Unit 2- OO Programming 26

Function Overloading

Use the same name for different (but similar) functions
i.e. define the functions length for a string and an array of int

At a call, C++ chooses one of them according to the
argument type as follows:

if an exact argument type match is found, the corresponding
function is called

if a unique match is found after type promotions, the
corresponding function is called

if a unique match is found after type conversions, the
corresponding function is called

Unit 2- OO Programming 27

Operator Overloading
You can redefine in any class the built-in operators:
+, - , ..., =, ++, ..., [], <<, ..., etc.
Except

::, . , sizeof ?:

An overloaded operator can be defined as:
a member function in a class, or
a friend of a class

An overloaded operator:
must have at least one class (or struct) argument
has the same number of arguments, precedence and associativity as the built-in operation
if its first argument is of class X, it can be declared as a member of X; otherwise it should be
a non-member.

Example:
In the following we’ll use the Complex class (representing complex numbers):
Complex Class Header
Complex Class Source
Complex Class Test Driver
We’ll define a + operator (to add two complex numbers).

Unit 2- OO Programming 28

Example: Overloading + in Complex
As a non member: I

It should be declared as friend in Complex

Complex operator+(Complex x, Complex y)

{

return Complex(x.realPart + y.realPart,

x.imaginaryPart +y.imaginaryPart);

}

As a member:

Complex Complex::operator+(Complex y)

{

return Complex(realPart + y.realPart,

imaginaryPart + y.imaginaryPart);

}

In this case, we can use it
using the functional notation

c = operator+(a, b);

or the operator notation

c = a + b;

In this case, we can use it
using the functional notation

c = a.operator+(b);

or the operator notation

c = a + b;

Unit 2- OO Programming 29

Example: Overloading [] in IntVector
Code:
int& IntVector::operator[](int i) {

if (i < low || i > high) {
cerr << "Index out of range\n";
exit(1);

}
return value[i - low];

}

Then we can do the following:
IntVector a(5,10), b(1,20);
a[5] = 0;
b[1] = a[5];

See examples for the complete code (that includes [] and =
operators) for IntVector

Unit 2- OO Programming 30

Type Conversion Operators

Built-in types are automatically converted to different Built-in types if this is
necessary and possible:

during the evaluation of a sub-expression
across assignments
at a function call (where the expression is the argument)
at a function return (where the expression is the return value)

For built-in types:
user can enforce conversions by using type coercion or type casting of the form:

type-name(expression)

E.g.
char(5*20) converts the result into a character;
(int *)(p+2) converts the result into a pointer to an integer.

For defined classes,
an explicit conversion from class X to Y can be performed by defining in Y a
constructor of the form Y(X) or Y(X&).

Unit 2- OO Programming 31

Example
Suppose in the class Complex we define:

class Complex {
public:

Complex()
// regular constructor
{

realPart = 0; imaginaryPart = 0;
}
Complex(double a, double b)
// regular constructor
{

realPart = a; imaginaryPart = b
}
Complex(double d)
// typecasts double to Complex
{

realPart = d; imaginaryPart = 0
}
. . .

};

Then we can do:

Complex C;
double d = 5;
C = Complex(d);

Unit 2- OO Programming 32

Variable Kinds
A C++ program may have many source files with many classes and functions.
A variable has two characteristics:

extent or lifetime
visibility or scope

C++ has 4 types of scope:
local (internal)

– variable is known only inside the block in which it is declared.
global (external)

– variable is declared outside of any function or block
– is known throughout any source file in which it is declared. i.e. extern variables, functions

and classes
file

– its scope is the source file in which it is declared
– it cannot be used in any other file, i.e. static variables

class or struct
– the scope of a variable which is a member of a class or structure is that class or structure

A variable can have one of the following 3 extent types:
automatic

– created whenever the block in which it is declared is executed;
– destroyed whenever the block is exited.

dynamic
– its memory is explicitly allocated and destroyed using new and delete

static
– created when program is loaded in memory and retains its value until the end of the

program (i.e. retains its value between calls)
The scope of a static name cannot exceed the source file in which it is declared.

Unit 2- OO Programming 33

Example
Consider the following program ;

int k;
static int i;
void p(int a)
{ static int b = 50;

int c;
int *w = new int;
c = a + a;
b += c;

}

static void q(void)
{ k = 1;

p(k);
}

void main()
{ int k = 2;

p(k);
}

The characteristics of the variables are summarized in the following table

block ref'd by w dynamic

---------------------i, q b static

k (first line),p----------------a,c,w,k (in main) automatic

global filelocal

Unit 2- OO Programming 34

Memory Organization
There are a number of 'segments' in memory when a C++ program is
running. The following segments are standard:
Code Segment :

also known as 'text' segment
it contains machine language code produced by the compiler
contains constant data

– e.g. const double e = 2.71828182845905
Static Data Segment:

contains all data that have been declared static
they are allocated when the program is loaded, and remain in memory until the
program terminates
Only static data are allocated in the data segment (i.e. static functions are not)
For instance, if we define

static int k;
static void foo(void)
{

static int i = 1;
....

}
i and k will be allocated in this segment.

Unit 2- OO Programming 35

Memory Organization (con’t)
Stack Segment

it contains automatic variables (including arguments) and
bookkeeping information as below

Heap Segment
consists of (dynamic) storage allocated via new
data stored in heap segment are not named; access is indirect via
pointers

Pictorially,

Code (Read Only)

Static (Read Write)

Heap (RW)

free (RW)

Stack (RW)

Unit 2- OO Programming 36

The Run-time Stack

When a procedure is called the system builds a stack
frame for the call and pushes it on the top of the stack

When the procedure returns, the system pops the frame
from the stack

A stack frame contains space for:
parameters

local automatic variables

return value

return address

other bookkeeping information

a pointer to the previous frame

Unit 2- OO Programming 37

Example
Suppose foo is defined as:

int foo(int a)

{ static int b = 0;

int c = a;

b += a;

return a + b + c;

}

When foo(5) is called, the stack frame might
look like that on the right

Recursion is done by pushing an additional
frame onto the stack. Some C compilers
'recognize' tail recursion and do not push an
additional frame.

return address

5 (a)

5 (c)

return value

...

pointer to
|previous frame

Unit 2- OO Programming 38

Static Var’s and the Stack

Static variables are NOT stored on the stack:
they are stored in the static segment
they are allocated and initialized exactly once

Example: Consider the following function.
int count()
{ static int j = 0;

j++;
return j;

}
int main()
{ cout << "first " << count()<< " second " << count()<< " third " <<

count()<< "/n";
}

This produces the output:
first 1 second 2 third 3

which clearly shows that only one location is used for j.

Unit 2- OO Programming 39

Dynamic Memory Allocation
Often it is necessary for the program to allocate memory
as it is needed:

data size is not known in advance
size of data varies widely
most objects need to be created at run time
most objects need to be dynamic

This is called dynamic memory allocation and is done by
operators new and delete (as we have seen).
Dynamic data created this way

is on the heap
is accessible through pointers only
has dynamic extent
is accessible by any part of the program (as long as the address
of the data is known)

Unit 2- OO Programming 40

New Operator
its argument is a type (or class)
it searches the heap to find a space big enough for an object of the
given type
if there is enough space

it claims the space found and marks it as occupied
returns the location's address

if there is not enough space
an exception is raised or a NULL is returned (depends onthe
implementation);

new can be used with two arguments: a type and a positive integer
n, in which case it allocates space for n objects of this type
i.e.
p = new Point(3,4); // one point
a = new Point[100]; // 100 points

Unit 2- OO Programming 41

Delete Operator

its argument is a pointer

it frees the space occupied by the object the pointer
points to

its argument remains unchanged

if its argument is NULL, it does nothing

it will cause an error if you delete a space not previously
allocated by the new operator

if par is a dynamic array of pointers to some type

delete [] par;

will apply delete to each element of par before it deletes
the space par points to.

Unit 2- OO Programming 42

Memory Fragmentation

Inherent in dynamic allocation is the concept of
fragmentation.

Heap is divided into a large number of small fragments.

Degree of fragmentation depends on the allocation
strategy in use. Three allocation strategies are:

first fit : find the first suitable segment

best fit : find the smallest suitable segment

worst fit : find the largest suitable segment

Unit 2- OO Programming 43

Dangling Pointers
A dangling pointer is a pointer whose value
is the address of a storage block which has
been freed.

Consider the code on the right
The error here is in the last line

We can't dereference p, since freeing the
node it pointed to made p invalid (dangling
pointer)

The effect is indeterminate.

The second box on the right shows a case
in which more than 1 pointer points to the
same object

it might not be at all apparent that q is
invalid

int * p;
p = new int;
. . .
*p = 20;
. . .
delete p;
. . .
*p = 5;

int * p;
p = new int;
. . .
*p = 20;
int* q = p;
. . .
delete p;
. . .
*q = 5;

Unit 2- OO Programming 44

Inaccessible Objects - Memory Leaks

A dynamic object with no pointer pointing to it is
inaccessible.

A memory leak is created by:
inaccessible objects

dynamic objects that are not needed anymore (and never
deleted)

In certain languages, objects cannot be explicitly freed.
These languages have a garbage collection or
scavenging system that frees objects no longer in use.

In C and C++, garbage collecting is done by the
programmer, whereas in Java and Scheme, the system
performs the garbage collection.

