Unit 2
Object-Oriented Programming
with C++

»Overview of Object-Oriented Programming
»C++ Classes

»Constructors

»Pointers and Dynamic Objects
»Destructors

»Qverloading Operators

»Conversion Operators

»Memory Organization

»Dynamic Memory Allocation

» Input/Output

Object-Oriented Programming (OOP)

® Programs are collections of objects
® Computation is done by sending messages to objects
®m Objects have 3 characteristics
> state
» behavior
> identity
® Example: bank accounts state: id, name, balance
> behaviour: deposit, withdraw, etc.
> identity: Joe's account is similar but different than Jane's
®m Aclass is a group of objects with the same behavior and representation.
> A class defines an abstract data type
— it defines the state variables and operations (methods) for its objects.
> A class may inherit characteristics from ancestor classes.
» Objects are instances of classes.

® Fundamental characteristics of OOP languages are:
> encapsulation
» instantiation
» inheritance
> polymorphism

Unit 2- OO Programming




C++ Classes

®m A class declaration or signature consists of:

» class name

> declarations of private members (data and operations)
> declarations of public members (data and operations)

B A class definition consists of:
> aclass declaration, and

» definitions of the member functions (operations)

® |tis customary to treat a class as a module, splitting its definition is a
specification and implementation files

®m The specification or header file of a class X

» contains the class declaration
> is named X.h

® The implementation or source file of a class X
» contains the definitions of the member functions

» is,named X.cpp or X.C.

®m  Any file that uses X can include X.h.

Unit 2- OO Programming

Example: Class Point, Header File

/I file: Point.h
// Point class header

#ifndef POINT_H
#define POINT_H

class Point

/I The Point class defines a point on the
Cartesian plane in terms of x and

/l'y coordinates. The class has both a default
and parameterized

/I constructors.

/I Class Invariants:

/I - The coordinates of a Point are always
defined

/I - getX() and getY() always return a value

{
public:

Point();
/I Default constructor
/I PRE: None

/I POST: A new Point object is created with (

o2 g5 s Goordinates

Point( double x1, double y1);
/I Parameterized constructor
/I PRE: x1 and y1 are two valid doubles.

/ POST: A new Point object is created with (
x1, y1) as its coordinates

double getX() const;

/I Accessor member function

/I PRE: None

/I POST: The current X coordinate is returned

double getY() const;
/I Accessor member function
/I PRE: None
// POST: The current Y coordinate is returned

double distanceFromOrigin() const;

/I Accessor member function

/ PRE: None

/[ POST: The distance to the origin is returned
/I Library facilities used: sqrt() from cmath

#endif




Class Point, Header File (cont’)

Point translate( double xDistance, double
yDistance ) const;

/I Accessor member function

/I PRE: xDistance and yDistance are the
horizontal and vertical

1l displacements.

/I POST: A Point located at the result of the
translation is returned

void print() const;

/I Accessor member function

/I PRE: None

/I POST: The current coordinates of the Point
is printed

/I Library facilities used: cout object and
operator<< from iostream

private:

double x; // x coordinate
double y; //'y coordinate

Unit 2- OO Programming

Class Point, Source File

// file: Point.cpp
/I Point class source

#include <iostream> // used in print()

#include <cmath> /l used in
distanceFromOrigin()

#include "Point.h"
using namespace std;

/I Note: This module uses the sqrt() function in
the math library.

1 So when producing a final executable file
using this module,

1 the math library must be linked in.

Point::Point()
/I Default constructor
/I PRE: None

/I POST: A new Point object is created with ( 0,
0) as its coordinates
{

0;
0

X
y=0
}

Unit 2- OO Programming

Point::Point( double x1, double y1)
/| Parameterized constructor
/I PRE: x1 and y1 are two valid doubles.

/I POST: A new Point object is created with ( x1,
yl) as its coordinates
{

X =Xx1;
y=yl;
}

double Point::getX() const

/I Accessor member function

/I PRE: None

/I POST: The current X coordinate is returned

{

return x;

}




Class Point, Source File (cont’d)

double Point::getY() const

/I Accessor member function

/I PRE: None

/I POST: The current Y coordinate is returned
{

returny;

}

double Point::distanceFromOrigin() const
/I Accessor member function
/l PRE: None
/I POST: The distance to the origin is returned
/I Library facilities used: sqrt() from cmath
{
return sqri( x *x +y *y);

}

Point Point::translate( double xDistance, double
yDistance ) const

/I Accessor member function

/| PRE: xDistance and yDistance are the
horizontal and vertical displacements.

/I POST: A Point located at the result of the
translation is returned

Unit 2- OO Programming

{

double a;
double b;

a = x + xDistance;
b =y + yDistance;

return Point( a, b);

}

void Point::print() const
/I Accessor member function
/I PRE: None

/I POST: The current coordinates of the Point is
printed

Il Library facilities used: cout object and
operator<< from iostream
{

COUt<<"("<<X<<", "

}

<y<<” )";

Using the Point class

® Now, Point can be used as a new type:

Point p;
Point q(2,3);

double a = 1;
a = p.x; // Error
p.x = a; // Error

a = p.getX() // a becomes 0

p.print() // prints: (0,0)

q-print() // prints: (2,3)

a = (p-translate(5,10)).getXx() 7/ a is 5
Note:

®m  Objects of a class are initialized by the class constructors or initializers.
®m Private members are only accessible inside the class definition.
®m Public operations (methods) are applied to an object
> i.e. p.print
® This object is the implicit argument of the operation.

®m A const at the end of the function header means the implicit argument is not

modified
Unit 2- OO Programming 8




Constructors (or Initializers)

Constructors are special operators used to initialize an object.

Are not real functions:
» have the same name as the class
> are not called explicitly
» do not have a return type
A class may have multiple constructors (with different arguments)

Constructors of a class X are invoked when
> avariable of class X is declared i.e.
Point p;
Point q(2,3);
> atemporary object is created; i.e.
a = Point(3,4);
return Point(2,3);

» a function with a parameter X is called
i.e. suppose distance is a function calculating the distance between two points

a = distance(p, q)
» a function returning X returns, i.e.
p.translate(5,10);

> a variable with a member X is initialized.
Unit 2- OO Programming

Class Invariants

®m Special assertions that are true by any member of the class

® They are denoted by Class Invariants:
» in the design of the class, or
» as a comment at the beginning of the header file for the class

® For any class:

» aconstructor _ _
~ must satisfy the Class Invariants upon its return

» a member function
— assumes that Class Invariants are true at invocation
— must ensure that Class Invariants are true upon its return

m Example: The design for the Point class should contain the
following class invariant.

» The coordinates of any point are always defined.
OR

» getx and gety always return a value

Unit 2- OO Programming

10




Pointers and Dynamic Data

®m A pointer is a variable whose value is the memory address of another data
structure.

® A pointer declaration:
<type>* <variable>
m Eg.
int *ip, *iq;
Point* pp;

® Note:
> The type of pp is pointer to Point.
» The declaration allocates space for pp, but not for any point.

®  Functions can also return pointer values.
.e. int*f(int x)
f returns an address of an integer.

® C and C++ permit a variety of operations on pointers including
» dereference
> pointer arithmetic

Unit 2- OO Programming

11

The operators * and &

® Are used to manipulate pointers:
> *is the dereference or indirection operator
— used to dereference a pointer value.
> & is the address-of operator
— gives the address of an object.

m Example: Demonstrating the use of * and &.

intx,y;

int* ip;

X=2:

y=3;

Ip = &X; Il ip points to x now

y = *ip; /l the value of y is now 2
*ip = 0; /I the value of x is now O
(*ip)++; /Il the value of x is now 1

® The address of an object cannot be changed.
&x = &y is not permitted.

® & is used to pass the address of a parameter to a function.

Unit 2- OO Programming

12




Notation we Use with Pointers

Consider the following declarations:

Declaration Address Memory cells Name
int x =5; 3000 5 X
inty =10 5000 10 y
int * p; 5000 P

When we execute
p = &X;
3000 is placed in the memory slot for p
We say that p points to x and we show it :

D X

3)

Unit 2- OO Programming 13

Example Using * and &

®m To swap the values of two integer variables we can
define the function

void swap ( Int *a, int *b )

{
int temp;
temp = *aj;
*a = *b:
*b = temp;
by

®m Suppose x and y are defined as
int x =5, y = 10;
To swap them we can call
swap(&x, &y);

Unit 2- OO Programming 14




References and Pointers

®m A variable can be declared to be a reference to type:
<type>& <variable>
le.
inti;
int& p = i I/l p is an alias of the integer object i
m Areference is another name for the location it refers to.
i.e. in the previous example i and p are names of the same location
p=5;
causes i to be 5.

m References are usually used for parameter passing .

Unit 2- OO Programming 15

Example with References

®m The swap function can be written as:
void swap( int& a, int& b)
{
int temp;
temp = a;
a=b;
b =temp;
}
Then if we have declare
int x =5, y=10;
we can swap them by calling
Swap(X1 y);

Unit 2- OO Programming 16




Dynamic Data

m C++ has three kinds of data:
» automatic data - allocated, deallocated automatically
» static data - exists throughout the program
» dynamic data - allocated, deallocated by the programmer

m We'll discuss how dynamic data are allocated and
deallocated.

Unit 2- OO Programming

17

Allocation of Dynamic Data

® When the new operator is applied to a constructor,
» an object of the class is generated
» the address of the object is returned

m Example:
int* ip, *ap;
ip = new int;
ap = new int[50];

Point * r, *s;
r = new Point(3,4);
s = new Point[20];
The last example calls Point()
with each s[i] (i = 0 to 19).

Unit 2- OO Programming

18




Deallocation of Dynamic Data

® When the delete operator is applied to a pointer that
points to a dynamic object, it frees the space the pointer
points to
» The pointer is then considered unassigned.

m Example:

» delete ip;
delete [] ap;

®m Good Idea:
After deleting the space, set the pointer to NULL.

m If the address (pointer value) is NULL and apply delete
to it, nothing happens.

Unit 2- OO Programming 19

Destructors

The destructor for a class X is a method with name ~X().
> It has no arguments and no return type.
» It cannot be called; it is invoked by the system.
®m The destructor ~X is invoked:
> at the end of the scope of a variable of type X
when delete is applied to a variable of type X*
at the end of a function with an argument of type X
to destroy temporaries after their use
when a variable with an X member is deleted.
® When the delete operator is applied to a pointer, it
» invokes the destructor of the class first
> then recycles the storage pointed to by the pointer.
m [f pis an array of n objects of class X, then
delete [ p;
applies the destructor of X to each element of the array p
then deletes the array p itself.

®m A destructor is needed for composite objects that contain dynamic data
For simple objects like Point, it is not necessary.

YV V V V

Unit 2- OO Programming 20




Example: Integer Vector

® An implementation of arrays of integers that

» check for out-of-range condition
» can be assigned.

® The code can be found in the examples in following files:

IntVector Class Header File
IntVector Class Source File
IntVector Class Test Driver

Note:
®m The destructor has to deallocate all the dynamic data

allocated by the member functions.

Unit 2- OO Programming

21

Copy Constructors (or Copy Initializers)

A copy initializer for a class C is a constructor of the form
C(const C&)
It is used automatically when copying occurs.
Copying an object occurs
» at an assignment
» at initialization
» passing arguments (by value)
» returning values from a function

In the first case, the assignment operator is used.
In the rest, the copy constructor is used.

If no constructor is defined, the system performs a shallow copy
(or memberwise copy ):

» only the top members of the object are copied

If the object has dynamic members
» adeep copy is required
» acopy constructor and an assignment operator must be defined

Unit 2- OO Programming

22




Shallow vs. Deep Copy

B Suppose we execute
IntVector a(5,10);
IntVector b = a;

SHALLCSW COFY
. —
a
5
10
b 5
10

Unit 2- OO Programming

DEEP COFY

|

10

10

23

Example: Copy Constructor for IntVector

class IntVector

{
public:

IntVector();
/I Default constructor

IntVector(intl, inth);
/I Parameterised constructor

IntVector( const IntVector&
someVector );
/I Copy constructor

private:

int* value; // Pointer to a dynamically-
allocated array of integers

int low; /l the lower index bound

int high; // the upper index bound

void copy( const IntVector& someVector );
/I Helper function used by copy constructor

}

Unit 2- OO Programming

IntVector::IntVector( const IntVector& someVector )
/I Copy constructor

{

copy( someVector );

}

void IntVector::copy( const IntVector& someVector )

/I Private member helper function that copie
/I the contents of IntVector
/I 'someVector' into the current IntVector
{
low = someVector.low;
high = someVector.high;
value = new int[ high - low + 1 ];

for (inti=0;i<=high - low; i++)

valueli] = someVector.valueli;

}
}

24




Friends

m |f we want a function or method f defined outside a class C to have access to the
private members of C, we declare (in class C) f to be a friend of C.

m  Example: Function Friend
Declaring distance function to be a friend of Point:

class Point {
friend double distance(Point, Point);

}

double distance(Point a, Point b) {
return sqgrt((a.x - b.x)*(a.x - b.x) + (a.y - b.y)*(a.y - b.y));
}
m A class A can also declare another class B to be a friend.
B can then access the private members of A.

m  Example: Class Friend
If we want the class Triangle to have access to Point we define:
class Point

friend class Triangle;

Unit 2- OO Programming

25

Function Overloading

®m Use the same name for different (but similar) functions
> 1.e. define the functions length for a string and an array of int

®m At a call, C++ chooses one of them according to the
argument type as follows:

» if an exact argument type match is found, the corresponding
function is called

» if a unique match is found after type promotions, the
corresponding function is called

» if a unique match is found after type conversions, the
corresponding function is called

Unit 2- OO Programming

26




Operator Overloading

B You can redefine in any class the built-in operators:
t, =, aea, =, oo, [, <<, ..., etc.
Except
3, ., Sizeof ?:

®  An overloaded operator can be defined as:
» a member function in a class, or
» afriend of a class

®  An overloaded operator:
» must have at least one class (or struct) argument
» has the same number of arguments, precedence and associativity as the built-in operation

» ifits first argument is of class X, it can be declared as a member of X; otherwise it should be
a non-member.

Example:

® In the following we'll use the Complex class (representing complex numbers):
Complex Class Header
Complex Class Source
Complex Class Test Driver

m  We'll define a + operator (to add two complex numbers).

Unit 2- OO Programming 27

Example: Overloading + in Complex

®  As anon member: |

® In this case, we can use it
It should be declared as friend in Complex

using the functional notation

= + .
Complex operator+(Complex x, Complex y) C = operator+(a, b);

{ or the operator notation
return Complex(x.realPart + y.realPart, c=a+b;
x.imaginaryPart +y.imaginaryPart);
}
= Asamember: ® In this case, we can use it
using the functional notation
Complex Complex::operator+( Complex y) ¢ = a.operator+(b);
{ or the operator notation
return Complex( realPart + y.realPart, c=a+b:
imaginaryPart + y.imaginaryPart); ’
}

Unit 2- OO Programming 28




Example: Overloading [] in IntVector

Code:
int& IntVector::.operator[](int i) {
if (i <low || i>high){
cerr << "Index out of range\n";
exit(1);
}

return value[i - low];

}

Then we can do the following:
IntVector a(5,10), b(1,20);
al5] = 0;
b[1] = a[5];

See examples for the complete code (that includes [] and =
operators) for IntVector

Unit 2- OO Programming

29

Type Conversion Operators

Built-in types are automatically converted to different Built-in types if this is
necessary and possible:

» during the evaluation of a sub-expression

> across assignments

> at a function call (where the expression is the argument)

> at a function return (where the expression is the return value)

For built-in types:

» user can enforce conversions by using type coercion or type casting of the form:

type-name( expression )

E.g.
char(5*20) converts the result into a character;
(int *)(pt2) converts the result into a pointer to an integer.

For defined classes,

» an explicit conversion from class X to Y can be performed by definingin Y a
constructor of the form Y (X) or Y(X&).

Unit 2- OO Programming

30




Example

Suppose in the class Complex we define:
class Complex {
public:
Complex()
/I regular constructor
{
realPart = 0; imaginaryPart = 0;
}
Complex( double a, double b))
/l regular constructor

{
realPart = a; imaginaryPart = b Then we can do:

}

Complex( double d ) Complex C;

Il typecasts double to Comple

{yp Sts dou piex double d = 5;
realPart = d; imaginaryPart = 0 C = Complex(d);

}

Unit 2-}C;O Programming 31

Variable Kinds

A C++ program may have many source files with many classes and functions.

A variable has two characteristics:
» extent or lifetime
> visibility or scope
C++ has 4 types of scope:
> local (internal)
— variable is known only inside the block in which it is declared.
> global (external)
— variable is declared outside of any function or block

— is known throughout any source file in which it is declared. i.e. extern variables, functions
and classes

> file
— its scope is the source file in which it is declared
— it cannot be used in any other file, i.e. static variables
» class or struct
— the scope of a variable which is a member of a class or structure is that class or structure

A variable can have one of the following 3 extent types:

> automatic
— created whenever the block in which it is declared is executed;
— destroyed whenever the block is exited.

» dynamic
— its memory is explicitly allocated and destroyed using new and delete

> static
— created when program is loaded in memory and retains its value until the end of the

program (i.e. retains its value between calls)

B The scope of a static name cannot exceed the source file in which it is declared.
Unit 2- OO Programming 32




Example

®m Consider the following program ;

int k; static void q( void )
static int i; { k=1
void p(inta) p(k):
{ staticintb =50; }
int c;
int *w = new int; void maino
c=a+a { intk=2;
b+=c; p(k);
} }
The characteristics of the variables are summarized in the following table
local file global
automatic a,c,w,k (in main) | ---------------- k (first line),p
static b ,Q | meememememeeeeeeeees
dynamic block ref'd by w
Unit 2- OO Programming 33

Memory Organization

®m There are a number of 'segments' in memory when a C++ program is
running. The following segments are standard:
® Code Segment :
> also known as 'text' segment
> it contains machine language code produced by the compiler
> contains constant data
— e.g. const double e =2.71828182845905
m Static Data Segment:
» contains all data that have been declared static

» they are allocated when the program is loaded, and remain in memory until the
program terminates

» Only static data are allocated in the data segment (i.e. static functions are not)
» For instance, if we define

static int k;
static void foo(void)

{

static inti = 1;

}

i and k will be allocated in this segment.

Unit 2- OO Programming 34




Memory Organization (con't)

m Stack Segment
» it contains automatic variables (including arguments) and
» bookkeeping information as below
® Heap Segment
» consists of (dynamic) storage allocated via new
» data stored in heap segment are not named; access is indirect via

pointers
®m Pictorially,
Code (Read Only)
Static (Read Write)
Heap (RW)
free (RW)
I Stack (RW) .

The Run-time Stack

® When a procedure is called the system builds a stack
frame for the call and pushes it on the top of the stack

® When the procedure returns, the system pops the frame
from the stack

m A stack frame contains space for:
» parameters
» local automatic variables
» return value
» return address
» other bookkeeping information
> a pointer to the previous frame

Unit 2- OO Programming 36




Example

Suppose foo is defined as:
int foo(int a)
{ static int b = 0;
intc=a;
b += a;
returna+ b + c;

When foo(5) is called, the stack frame might
look like that on the right

Recursion is done by pushing an additional
frame onto the stack. Some C compilers
'recognize’ tail recursion and do not push an
additional frame.

Unit 2- OO Programming

return address

5(a)

5(c)

return value

pointer to
|previous frame

37

Static Var’'s and the Stack

B Static variables are NOT stored on the stack:

» they are stored in the static segment
» they are allocated and initialized exactly once

m Example: Consider the following function.

int count()

{ staticintj=0;
j++;
return j;

}

int main()

{ cout << "first " << count()<< " second " << count()<< " third " <<

count()<<"/n";

}

This produces the output:
first 1 second 2 third 3

which clearly shows that only one location is used for j.

Unit 2- OO Programming

38




Dynamic Memory Allocation

m Often it is necessary for the program to allocate memory
as it is needed:
» data size is not known in advance
» size of data varies widely
» most objects need to be created at run time
» most objects need to be dynamic

®m This is called dynamic memory allocation and is done by
operators new and delete (as we have seen).

® Dynamic data created this way
> is on the heap
» Is accessible through pointers only
» has dynamic extent
» is accessible by any part of the program (as long as the address
of the data is known)

Unit 2- OO Programming 39

New Operator

B jts argument is a type (or class)
® it searches the heap to find a space big enough for an object of the
given type
m if there is enough space
» it claims the space found and marks it as occupied
» returns the location's address

m if there is not enough space

» an exception is raised or a NULL is returned (depends onthe
implementation);

® new can be used with two arguments: a type and a positive integer
n, in which case it allocates space for n objects of this type

= ie.
p = new Point(3,4); Il one point
a = new Point[100]; // 100 points

Unit 2- OO Programming 40




Delete Operator

® its argument is a pointer

m it frees the space occupied by the object the pointer
points to

® its argument remains unchanged
m if its argument is NULL, it does nothing

m it will cause an error if you delete a space not previously
allocated by the new operator

m if par is a dynamic array of pointers to some type
delete [] par;

will apply delete to each element of par before it deletes
the space par points to.

Unit 2- OO Programming 41

Memory Fragmentation

® Inherent in dynamic allocation is the concept of
fragmentation.

®m Heap is divided into a large number of small fragments.

®m Degree of fragmentation depends on the allocation
strategy in use. Three allocation strategies are:
» first fit : find the first suitable segment
» best fit : find the smallest suitable segment
» worst fit : find the largest suitable segment

Unit 2- OO Programming 42




Dangling Pointers

® A dangling pointer is a pointer whose value int* p; _
is the address of a storage block which has p = new Int;
been freed. ..
® Consider the code on the right *p = 20;
» The error here is in the last line T _
; , , delete p;
» We can't dereference p, since freeing the
node it pointed to made p invalid (dangling — .
pointer) p=5;
» The effect is indeterminate. int * p;
p = new int;
® The second box on the right shows a case e
in which more than 1 pointer points to the *p = 20;
same object Int* q = p;
> it might not be at all apparent that q is T
invalid delete p;
Unit 2- OO Programming *q =3; 2

Inaccessible Objects - Memory Leaks

® A dynamic object with no pointer pointing to it is
inaccessible.
® A memory leak is created by:
» inaccessible objects
» dynamic objects that are not needed anymore (and never
deleted)
® |n certain languages, objects cannot be explicitly freed.
These languages have a garbage collection or
scavenging system that frees objects no longer in use.

®m In C and C++, garbage collecting is done by the
programmer, whereas in Java and Scheme, the system
performs the garbage collection.

Unit 2- OO Programming 44




