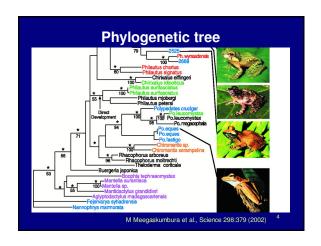
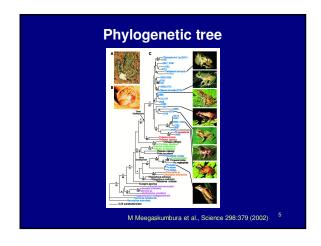

TreeJuxtaposer: Scalable Tree Comparison using Focus+Context with Guaranteed Visibility Tamara Munzner Univ. British Columbia François Guimbretière Univ. Maryland College Park Serdar Taşiran Li Zhang, Yunhong Zhou


Koç University


Hewlett Packard Systems


Research Center

Tree comparison • Active area: hierarchy visualization – previous work: browsing – comparison still open problem • Bioinformatics application – phylogenetic trees reconstructed from DNA

Biologists' requirements

- Reliable detection of structural differences

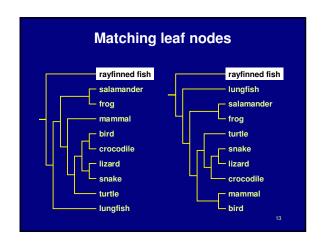
 rapid identification of interesting spots
- Analysis of differences in context
 mostly side by side comparison
- · Manipulation of increasingly larger trees
- Support for multiple platforms

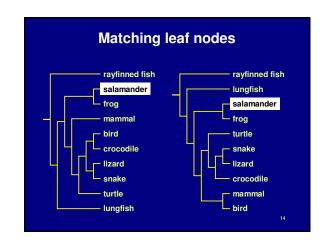
TreeJuxtaposer contributions

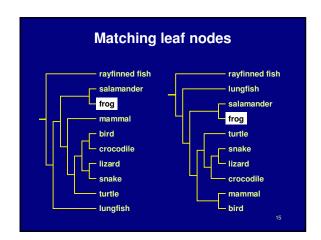
- Interactive tree comparison system
 - automatic detection of structural differencessub-quadratic preprocessing
 - efficient Focus+Context navigation and layout
 merge overview and detail in single view
 - guaranteed visibility under extreme distortion
- Scalable
 - dataset size: handles 280K 500K nodes
 - display size: handles 3800x2400 display

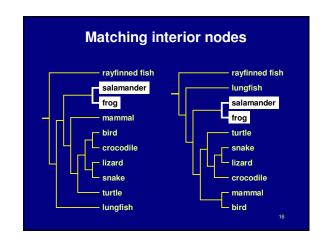
TreeJuxtaposer video

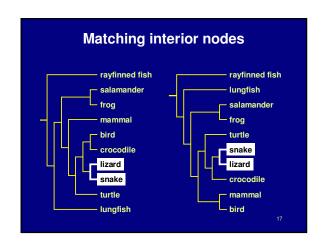
- · Platforms shown
 - java 1.4, GL4Java 2.7 bindings for OpenGL
 - Windows
 - 2.4 GHz P3, nVidia Quadro4 700XGL
 - 1.1GB java heap
 - window sizes 1280x1024, 3800x2400
 - Linux
 - 3.1 GHz P4, nVidia GeForce FX 5800 Ultra
 - 1.7GB java heap
 - window size 800x600

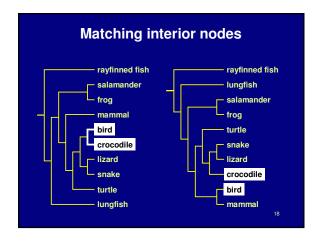

10

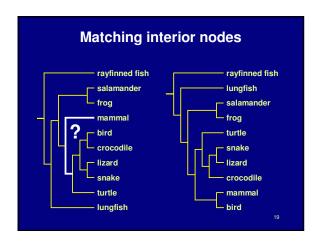

Outline

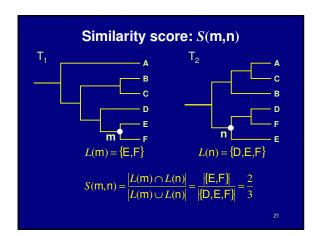

- · Application domain: evolutionary trees
- Demonstration
- Computing structural differences
- Guaranteed visibility of marked areas
- · Results and conclusions

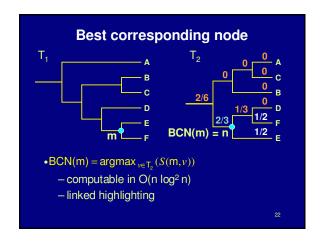

Comparing tree

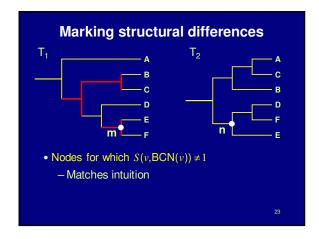

rayfinned fish
salamander
frog
mammal
bird
croccodile
lizard
snake
turtle
lungfish

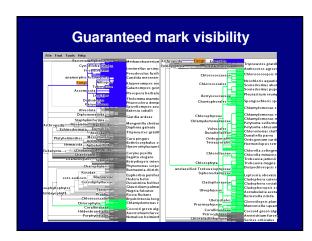


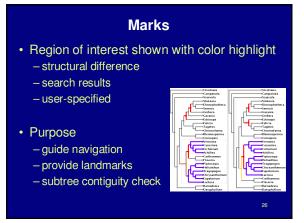









Previous work Tree comparison RF distance [Robinson and Foulds 81] perfect node matching [Day 85] creation/deletion [Chi and Card 99] leaves only [Graham and Kennedy 01]



Outline Application domain: evolutionary trees Demonstration Computing structural differences Guaranteed visibility of marked areas Results and conclusions

Guaranteed visibility of marks

• How can a mark disappear?

27

Guaranteed visibility of marks

How can a mark disappear?
 moving outside the frustum

28

Guaranteed visibility of marks

- How can a mark disappear?
 - moving outside the frustum
- Solutions
 - choose global Focus+Context navigation
 - "tacked down" borders

20

Focus+Context previous work

- combine overview and detail into single view
- Focus+Context
 - large tree browsing
 - Cone Trees [Robertson et al 91]
 - Hyperbolic Trees [Lamping et al], H3 [Munzner 97]
 - SpaceTree [Plaisant et al 02]
 - DOI Trees [Card and Nation 02]
 - global
 - Document Lens [Robertson and Mackinlay 93]
 - Rubber Sheets [Sarkar et al 93]
- our contribution
 - scalability, guaranteed visibility

Guaranteed visibility of marks

- How can a mark disappear?
 - moving outside the frustum
- Solutions
 - choose global Focus+Context navigation
 - "tacked down" borders

31

Guaranteed visibility of marks

- How can a mark disappear?
 - moving outside the frustum
 - occlusion
- Solutions
 - choose global Focus+Context navigation
 - "tacked down" borders

32

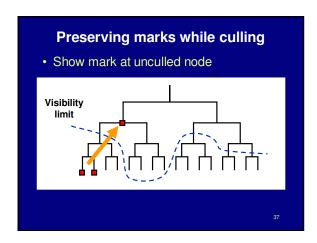
Guaranteed visibility of marks

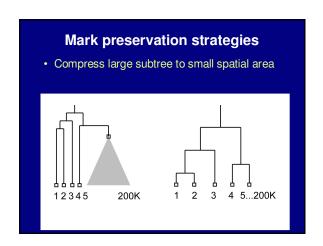
- How can a mark disappear?
 - moving outside the frustum
 - occlusion
- Solutions
 - choose global Focus+Context navigation
 - "tacked down" borders
 - choose 2D layout

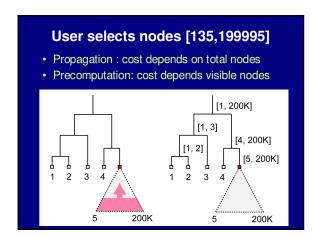
33

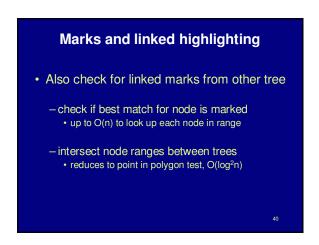
Guaranteed visibility of marks

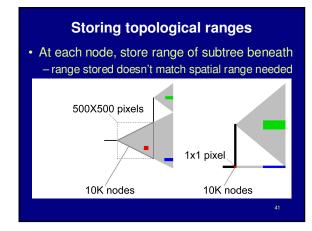
- · How can a mark disappear?
 - moving outside the frustum
 - occlusion
 - culling at subpixel sizes
- Solutions
 - choose global Focus+Context navigation
 - "tacked down" borders
 - choose 2D layout

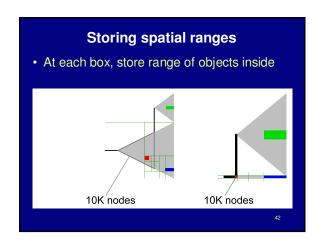

34


Guaranteed visibility of marks


- How can a mark disappear?
 - moving outside the frustum
 - occlusion
 - culling at subpixel sizes
- Solutions
 - choose global Focus+Context navigation
 - "tacked down" borders
 - choose 2D layout
 - develop efficient check for marks when culling


35


Preserving marks while culling • Show mark at unculled node Visibility limit



Spatial range solution

- · Recursive spatial subdivision
 - quadtree
 - store range of objects enclosed for each cell
 - quick check: spatial range vs. selection range
- Extending quadtrees to Focus+Context
 - quadtree cells also "painted on rubber sheet"
 - efficient O(log n) update when stretch/shrink
 - · details in paper

40

Guaranteed visibility previous work

- Visibility of abstract information
 - Effective view navigation [Furnas 97]
 - Critical zones [Jul and Furnas 98]

44

Outline

- Application domain: evolutionary trees
- Demonstration
- · Computing structural differences
- · Guaranteed visibility of marked areas
- · Results and conclusions

45

Difference computation

- Powerful and totally automatic
 - leads users to important locations
 - efficient algorithms: 7s for 2x140K nodes
 - matches intuition
 - UT-Austin Biology Lab, several others
- Challenges
 - memory footprint
 - handling weighted edges

46

Guaranteed visibility

- · Relief from exhaustive exploration
 - missed marks lead to false conclusions
 - hard to determine completion
 - tedious, error-prone
- Compelling reason for Focus+Context
 - controversy: does distortion help or hurt?
 - strong rationale for comparison

17

Guaranteed visibility challenges

- Integration with progressive rendering
 - might lose context during motion
 - need several seeds for rendering queue
 - · focus point
 - marked items
 - up to empirical cutoff, no guarantees
- Constraint to fit everything in frustum
 - instead could show indirectly

Future Work

- Adoption
 - open-source release
 - tighter integration with biology tools
 - broad range of application domains
- · Detectability vs. visibility
 - display resolution, surrounding colors
- Extend difference computation
 - weighted trees
 - -graphs

49

Conclusion

- First interactive tree comparison system
 - automatic structural difference computation
 - guaranteed visibility of marked areas
- Scalable to large datasets
 - -250,000 to 500,000 total nodes
 - all preprocessing subquadratic
 - all realtime rendering sublinear
- Techniques broadly applicable
 - not limited to biological trees

50

Acknowledgments

- Biologists
 - David Hillis, Bob Jensen, Will Fischer, Derrick Zwickl
- Computer scientists
 - Nina Amenta, Katherine St. John
- · Partial funding
 - NSF/DEB-0121682
- Talk preparation
 - Mary Czerwinski, Pat Hanrahan, George Robertson, Chris Stolte, Diane Tang, Gina Venolia