Data Visualization as a Driver for Visual Cognition Research

Tamara Munzner
Department of Computer Science
University of British Columbia

Workshop on Object Perception, Attention, and Memory (OPAM) 2017,
Interdisciplinary Research Panel: Discover Pasteur's Quadrant: Four research communities that will inspire your work
9 Nov 2017

@tamaramunzner
Interleaved structure

• **Things I Currently Say**
 – that draw on findings from visual cognition about how to visually encode and interact with information

• **Things I Wish I Knew**
 – where I’d love to see the visual cognition community do more work!
 • or to hear that the work exists and get pointers to it

www.cs.ubc.ca/~tmm/talks.html#opam17
We have many…

• **objects** (marks) on the display at once
• **visual channels** in use at the same time
• **views** visible side by side
• **tasks** that users switch between

www.cs.ubc.ca/~tmm/talks.html#opam17
Objects & channels

• marks (objects)
 – geometric primitives

• channels
 – visual depictions of magnitudes or categories
 – control appearance of marks to convey information

[Fig 5.2, 5.3 Visualization Analysis & Design. Munzner. CRC Press 2014.]

www.cs.ubc.ca/~tmm/talks.html#opam17
Channels: Expressiveness types and effectiveness rankings

- **Magnitude Channels: Ordered Attributes**
 - Position on common scale
 - Position on unaligned scale
 - Length (1D size)
 - Tilt/angle
 - Area (2D size)
 - Depth (3D position)
 - Color luminance
 - Color saturation
 - Curvature
 - Volume (3D size)

- **Identity Channels: Categorical Attributes**
 - Spatial region
 - Color hue
 - Motion
 - Shape

- **channel rankings**
 - what’s the order?
 - what are the rough equivalence classes? (are these right?)
 - what are the metric distances between them?
 - wrt time (RT)? wrt error (accuracy)? tradeoffs?

- **channel capacity**
 - how many discriminable steps/bins/levels are there in each channel?
 - how does this change when multiple channels at once?

[Fig 5.5, 5.6, 5.9. Visualization Analysis & Design. Munzner. CRC Press 2014.]
Channels: Separability vs integrality

- Position + Hue (Color)
 - Fully separable: 2 groups each
- Size + Hue (Color)
 - Some interference: 2 groups each
- Width + Height
 - Some/significant interference
- Red + Green
 - Major interference: 4 groups total: integral hue
 - 3 groups total: integral area

• how (& how much) do the channels interfere with each other?
 – what other pairs? to what extent? what’s the effect for # discriminable steps?
 – what about triples? n-way interactions for n up to at least 5-6?
 – what about when there’s a lot of visual complexity in the scene: many objects?
 • 100? 1000? 10K? 1M?

www.cs.ubc.ca/~tmm/talks.html#opam17
Many marks/objects, many channels, many tasks, many views

MizBee
https://youtu.be/86p7brwuz2g

www.cs.ubc.ca/~tmm/talks.html#opam17
Channels: Shape

• shape
 – complex combination of lower-level primitives
 – many bins

• how does shape decompose into elements?
 – I want equivalent of L*a*b* color space, for “shape space”
 • quantitative metric with equal JNDs along axes
 – eg pointy-ness vs smoothness; open vs closed; …
 • use for deciding on encoding
 • use for interpolating values

[Fig 10.1. Visualization Analysis & Design. Munzner. CRC Press 2014.]

www.cs.ubc.ca/~tmm/talks.html#opam17
Views: memory vs eyes

- interactive navigation within view
 - leverage spatial cognition, but rely on memory for previous states
Views: Interactive navigation within view

http://www.onezoom.org

www.cs.ubc.ca/~tmm/talks.html#opam17
Views: memory vs eyes

• interactive navigation within view
 – leverage spatial cognition, but rely on memory for previous states

• side by side views
 – low cognitive load to move eyes between juxtaposed views
 – but reduced display area, each view has 1/N pixel budget

http://www.onezoom.org

www.cs.ubc.ca/~tmm/talks.html#opam17
Views: Multiple linked side by side

http://buckets.peterbeshai.com/

www.cs.ubc.ca/~tmm/talks.html#opam17
Views: memory vs eyes

• interactive navigation within view
 – leverage spatial cognition, but rely on memory for previous states

• side by side views
 – low cognitive load to move eyes between juxtaposed views
 – but reduced display area, each view has 1/N pixel budget

• what’s the cost-benefit tradeoff of interactive navigation vs switching between multiple side by side views?
 – what mechanisms matter?
 • attention? memory? change detection?
 – does task switching between views affect how many objects people can track? can remember?
 • between 2 views? 3 views? 4? 5-10?

http://www.onezoom.org

http://buckets.peterbeshai.com
Tasks

- all possible pairs of \{action, target\}
 - discover distribution
 - compare trends
 - locate outliers
 - browse topology
 - compare shapes

• visual cognition concerns as lower-level operators
 - visual search
 - comparison
 - ensemble processing
 - what else?…

www.cs.ubc.ca/~tmm/talks.html#opam17

[Fig 3.1. Visualization Analysis & Design. Munzner. CRC Press 2014.]
Summary

• (many) channels & objects
 - ranking, classes, metric distances, capacity
 - separability / interference
 - shape space
• views
 - tradeoffs of multiple views vs interactive navigation
• tasks
 - from low-level vision operators to high-level vis tasks

• book http://www.cs.ubc.ca/~tmm/vadbook
• papers, videos, software, talks, courses
 http://www.cs.ubc.ca/group/infovis
 http://www.cs.ubc.ca/~tmm

www.cs.ubc.ca/~tmm/talks.html#opam17

Visualization Analysis and Design.
Tamara Munzner