Visualization Analysis & Design

Tamara Munzner
Department of Computer Science
University of British Columbia

Data Visualization Masterclass: Principles, Tools, and Storytelling
June 13 2017, VIZBI/VIVID, Sydney Australia

http://www.cs.ubc.ca/~tmm/talks.html#vad17sydney
@tamaramunzner
Outline

• **Session 1: Principles** 9:15-10:30am
 – Analysis: What, Why, How
 – Marks and Channels, Perception
 – Color

• **Session 2: Techniques for Scaling** 10:50-11:40am
 – Manipulate: Change, Select, Navigate
 – Facet: Juxtapose, Partition, Superimpose
 – Reduce: Filter, Aggregate

http://www.cs.ubc.ca/~tmm/talks.html#vad17sydney
Defining visualization (vis)

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

Why?...
Why have a human in the loop?

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

Visualization is suitable when there is a need to augment human capabilities rather than replace people with computational decision-making methods.

• don’t need vis when fully automatic solution exists and is trusted
• many analysis problems ill-specified
 – don’t know exactly what questions to ask in advance
• possibilities
 – long-term use for end users (e.g. exploratory analysis of scientific data)
 – presentation of known results
 – stepping stone to better understanding of requirements before developing models
 – help developers of automatic solution refine/debug, determine parameters
 – help end users of automatic solutions verify, build trust
Why use an external representation?

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

• external representation: replace cognition with perception

Why represent all the data?

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

- summaries lose information, details matter
 - confirm expected and find unexpected patterns
 - assess validity of statistical model

Anscombe’s Quartet

<table>
<thead>
<tr>
<th>Identical statistics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>x mean</td>
<td>9</td>
</tr>
<tr>
<td>x variance</td>
<td>10</td>
</tr>
<tr>
<td>y mean</td>
<td>7.5</td>
</tr>
<tr>
<td>y variance</td>
<td>3.75</td>
</tr>
<tr>
<td>x/y correlation</td>
<td>0.816</td>
</tr>
</tbody>
</table>

https://www.youtube.com/watch?v=DbJyPELmhJc

Same Stats, Different Graphs
Why are there resource limitations?

Vis designers must take into account three very different kinds of resource limitations: those of computers, of humans, and of displays.

• computational limits
 – processing time
 – system memory

• human limits
 – human attention and memory

• display limits
 – pixels are precious resource, the most constrained resource
 – information density: ratio of space used to encode info vs unused whitespace
 • tradeoff between clutter and wasting space, find sweet spot between dense and sparse
Analysis framework: Four levels, three questions

- **domain** situation
 - who are the target users?

- **abstraction**
 - translate from specifics of domain to vocabulary of vis

- **what** is shown? data abstraction

- **why** is the user looking at it? task abstraction

- **idiom**

- **how** is it shown?
 - visual encoding idiom: how to draw
 - interaction idiom: how to manipulate

- **algorithm**
 - efficient computation

Validation methods from different fields for each level

- **Domain situation**
 - Observe target users using existing tools

- **Data/task abstraction**
 - **Visual encoding/interaction idiom**
 - Justify design with respect to alternatives
 - **Algorithm**
 - Measure system time/memory
 - Analyze computational complexity
 - Analyze results qualitatively
 - Measure human time with lab experiment *(lab study)*
 - Observe target users after deployment *(field study)*
 - Measure adoption

- **anthropology/ethnography**

- **design**

- **computer science**

- **cognitive psychology**

- mismatch: cannot show idiom good with system timings
- mismatch: cannot show abstraction good with lab study
Why analyze?

- imposes a structure on huge design space
 - scaffold to help you think systematically about choices
 - analyzing existing as stepping stone to designing new

SpaceTree

- Encode
- Navigate
- Select
- Filter
- Aggregate

TreeJuxtaposer

- Encode
- Navigate
- Select
- Arrange

Datasets

- **Data Types**
 - Items
 - Attributes
 - Links
 - Positions
 - Grids

- **Data and Dataset Types**
 - **Tables**
 - Items
 - Attributes
 - **Networks & Trees**
 - Items (nodes)
 - Grids
 - Positions
 - Attributes
 - **Geometry**
 - Items
 - Positions
 - Attributes
 - **Clusters, Sets, Lists**
 - Items

- **Dataset Types**
 - **Tables**
 - **Networks**
 - **Fields (Continuous)**
 - **Geometry (Spatial)**

- **Dataset Availability**
 - **Static**
 - **Dynamic**

- **Attribute Types**
 - **Categorical**
 - +
 - ●
 - □
 - ▲
 - **Ordered**
 - Ordinal
 - **Quantitative**
 - **Ordering Direction**
 - Sequential
 - Diverging
 - Cyclic
Dataset and data types

Dataset Types
- **Tables**
- **Networks**

Attribute Types
- **Categorical**
- **Ordered**
 - **Ordinal**
 - **Quantitative**

Spatial
- **Fields (Continuous)**
- **Geometry (Spatial)**
• \{action, target\} pairs
 – discover distribution
 – compare trends
 – locate outliers
 – browse topology
Actions 1: Analyze

- **consume**
 - discover vs present
 - classic split
 - aka explore vs explain
 - enjoy
 - newcomer
 - aka casual, social

- **produce**
 - annotate, record
 - derive
 - crucial design choice
Actions II: Search

• what does user know? ➔ Search

– target, location

<table>
<thead>
<tr>
<th></th>
<th>Target known</th>
<th>Target unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location known</td>
<td>Lookup</td>
<td>Browse</td>
</tr>
<tr>
<td>Location unknown</td>
<td>Locate</td>
<td>Explore</td>
</tr>
</tbody>
</table>
Actions III: Query

• what does user know? ➔ Search
 – target, location

• how much of the data matters?
 – one, some, all

<table>
<thead>
<tr>
<th>Location known</th>
<th>Target known</th>
<th>Target unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lookup</td>
<td></td>
<td>Browse</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location unknown</th>
<th>Identify</th>
<th>Compare</th>
<th>Summarize</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Explore</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Targets

All Data
- Trends
- Outliers
- Features

Attributes
- One
 - Distribution
 - Extremes
- Many
 - Dependency
 - Correlation
 - Similarity

Network Data
- Topology
 - Paths

Spatial Data
- Shape
How?

Encode

- **Arrange**
 - Express
 - Separate
- **Order**
 - Align
- **Use**

Map

from **categorical** and **ordered** attributes

- **Color**
 - Hue
 - Saturation
 - Luminance
- **Size, Angle, Curvature, ...**

- **Shape**
 - + ● ■ △

- **Motion**
 - Direction, Rate, Frequency, ...

Manipulate

- **Change**
- **Select**
- **Navigate**

Facet

- **Juxtapose**
- **Partition**
- **Superimpose**

Reduce

- **Filter**
- **Aggregate**
- **Embed**

What?

Why?

How?
Further reading

 – Chap 1: What’s Vis, and Why Do It?
 – Chap 2: What: Data Abstraction
 – Chap 3: Why: Task Abstraction

Outline

• **Session 1: Principles** 9:15-10:30am
 – Analysis: What, Why, How
 – Marks and Channels, Perception
 – Color

• **Session 2: Techniques for Scaling** 10:50-11:40am
 – Manipulate: Change, Select, Navigate
 – Facet: Juxtapose, Partition, Superimpose
 – Reduce: Filter, Aggregate

http://www.cs.ubc.ca/~tmm/talks.html#vad17sydney
Encoding visually

• analyze idiom structure
Definitions: Marks and channels

• marks
 – geometric primitives

• channels
 – control appearance of marks
Encoding visually with marks and channels

• analyze idiom structure
 – as combination of marks and channels

1: vertical position
mark: line

2: vertical position
horizontal position
mark: point

3: vertical position
horizontal position
color hue
mark: point

4: vertical position
horizontal position
color hue
size (area)
mark: point
Channels

- **Position on common scale**
- **Position on unaligned scale**
- **Length (1D size)**
- **Tilt/angle**
- **Area (2D size)**
- **Depth (3D position)**
- **Color luminance**
- **Color saturation**
- **Curvature**
- **Volume (3D size)**

Spatial region

Color hue

Motion

Shape
Channels: Rankings

Magnitude Channels: Ordered Attributes
- Position on common scale
- Position on unaligned scale
- Length (1D size)
- Tilt/angle
- Area (2D size)
- Depth (3D position)
- Color luminance
- Color saturation
- Curvature
- Volume (3D size)

Identity Channels: Categorical Attributes
- Spatial region
- Color hue
- Motion
- Shape

- **effectiveness principle**
 - encode most important attributes with highest ranked channels
- **expressiveness principle**
 - match channel and data characteristics
Accuracy: Fundamental Theory

Steven’s Psychophysical Power Law: $S = I^N$
Accuray: Vis experiments

Discriminability: How many usable steps?

• must be sufficient for number of attribute levels to show
 – linewidth: few bins

[mappa.mundi.net/maps/maps 014/telegeography.html]
Separability vs. Integrality

<table>
<thead>
<tr>
<th>Category</th>
<th>Position</th>
<th>Size</th>
<th>Width</th>
<th>Red</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ Hue (Color)</td>
<td>+ Hue (Color)</td>
<td>+ Height</td>
<td>+ Green</td>
<td></td>
</tr>
<tr>
<td>Fully separable</td>
<td>Some interference</td>
<td>Some/significant interference</td>
<td>Major interference</td>
<td></td>
</tr>
</tbody>
</table>

- 2 groups each
- 2 groups each
- 3 groups total: integral area
- 4 groups total: integral hue
Further reading

 – Chap 5: Marks and Channels

Outline

• **Session 1: Principles** 9:15-10:30am
 – Analysis: What, Why, How
 – Marks and Channels, Perception
 – Color

• **Session 2: Techniques for Scaling** 10:50-11:40am
 – Manipulate: Change, Select, Navigate
 – Facet: Juxtapose, Partition, Superimpose
 – Reduce: Filter, Aggregate

http://www.cs.ubc.ca/~tmmtalks.html#vad17sydney
<table>
<thead>
<tr>
<th>How?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encode</td>
</tr>
<tr>
<td>➔ Arrange</td>
</tr>
<tr>
<td>➔ Express</td>
</tr>
<tr>
<td>➔ Separate</td>
</tr>
<tr>
<td>➔ Order</td>
</tr>
<tr>
<td>➔ Align</td>
</tr>
<tr>
<td>➔ Use</td>
</tr>
</tbody>
</table>

Map
- from *categorical* and *ordered* attributes
- ➔ Color
 - ➔ Hue
 - ➔ Saturation
 - ➔ Luminance
- ➔ Size, Angle, Curvature, ...

Facet
- ➔ Juxtapose
- ➔ Partition
- ➔ Superimpose

Reduce
- ➔ Filter
- ➔ Aggregate
- ➔ Embed

What?

Why?

How?
Challenges of Color

• what is wrong with this picture?

@WTFViz
“visualizations that make no sense”

Categorical vs ordered color

Decomposing color

• first rule of color: do not talk about color!
 – color is confusing if treated as monolithic

• decompose into three channels
 – ordered can show magnitude
 • luminance
 • saturation
 – categorical can show identity
 • hue

• channels have different properties
 – what they convey directly to perceptual system
 – how much they can convey: how many discriminable bins can we use?
Luminance

• need luminance for edge detection
 – fine-grained detail only visible through luminance contrast
 – legible text requires luminance contrast!

• intrinsic perceptual ordering

Categorical color: limited number of discriminable bins

- human perception built on relative comparisons
 - great if color contiguous
 - surprisingly bad for absolute comparisons
- noncontiguous small regions of color
 - fewer bins than you want
 - rule of thumb: 6-12 bins, including background and highlights

[Cinteny: flexible analysis and visualization of synteny and genome rearrangements in multiple organisms. Sinha and Meller. BMC Bioinformatics, 8:82, 2007.]
ColorBrewer

- http://www.colorbrewer2.org
- saturation and area example: size affects salience!
Ordered color: Rainbow is poor default

• problems
 – perceptually unordered
 – perceptually nonlinear

• benefits
 – fine-grained structure visible and nameable

Ordered color: Rainbow is poor default

• problems
 – perceptually unordered
 – perceptually nonlinear

• benefits
 – fine-grained structure visible and nameable

• alternatives
 – large-scale structure: fewer hues

Ordered color: Rainbow is poor default

• problems
 – perceptually unordered
 – perceptually nonlinear

• benefits
 – fine-grained structure visible and nameable

• alternatives
 – large-scale structure: fewer hues
 – fine structure: multiple hues with monotonically increasing luminance [eg viridis R/python]
Viridis

- colorful, perceptually uniform, colorblind-safe, monotonically increasing luminance

https://cran.r-project.org/web/packages/viridis/vignettes/intro-to-viridis.html
Ordered color: Rainbow is poor default

- problems
 - perceptually unordered
 - perceptually nonlinear
- benefits
 - fine-grained structure visible and nameable
- alternatives
 - large-scale structure: fewer hues
 - fine structure: multiple hues with monotonically increasing luminance [eg viridis R/python]
 - segmented rainbows for binned or categorical

Colormaps

- Categorical
- Ordered
 - Sequential
 - Diverging
- Bivariate

- Categorical limits: noncontiguous
 - 6-12 bins hue/color
 - far fewer if colorblind
 - 3-4 bins luminance, saturation
 - size heavily affects salience
 - use high saturation for small regions, low saturation for large

Further reading

 • Chap 10: Map Color and Other Channels

• ColorBrewer, Brewer.
 • http://www.colorbrewer2.org

 • http://www.stonesc.com/Vis06

Outline

• **Session 1: Principles** 9:15-10:30am
 – Analysis: What, Why, How
 – Marks and Channels, Perception
 – Color

• **Coffee Break** 10:30-10:50am

• **Session 2: Techniques for Scaling** 10:50-11:40am
 – Manipulate: Change, Select, Navigate
 – Facet: Juxtapose, Partition, Superimpose
 – Reduce: Filter, Aggregate

http://www.cs.ubc.ca/~tmm/talks.html#vad17sydney
Outline

• **Session 1: Principles** 9:15-10:30am
 – Analysis: What, Why, How
 – Marks and Channels, Perception
 – Color

• **Session 2: Techniques for Scaling** 10:50-11:40am
 – Manipulate: Change, Select, Navigate
 – Facet: Juxtapose, Partition, Superimpose
 – Reduce: Filter, Aggregate

http://www.cs.ubc.ca/~tmm/talks.html#vad17sydney
How?

Encode

- **Arrange**
 - Express
 - Separate
- **Order**
 - Align
- **Use**

Map

- from *categorical* and *ordered* attributes
- **Color**
 - Hue
 - Saturation
 - Luminance
- **Size, Angle, Curvature, ...**
- **Shape**
 - + • ■ △
- **Motion**
 - Direction, Rate, Frequency, ...

Manipulate

- **Change**

Facet

- **Juxtapose**

Reduce

- **Filter**
- **Aggregate**
- **Embed**

48
How to handle complexity: 3 more strategies

Manipulate

- **Change**
 - ![Change Diagram]

- **Select**
 - ![Select Diagram]

- **Navigate**
 - ![Navigate Diagram]

Facet

- **Juxtapose**
 - ![Juxtapose Diagram]

Reduce

- **Filter**
 - ![Filter Diagram]

- **Aggregate**
 - ![Aggregate Diagram]

- **Embed**
 - ![Embed Diagram]

- **Derive**
 - ![Derive Diagram]

- **Change view over time**
- **Facet across multiple views**
- **Reduce items/attributes within single view**
- **Derive new data to show within view**
How to handle complexity: 3 more strategies

- **Manipulate**
 - **Change**
 - **Select**
 - **Navigate**

- **Facet**
 - **Juxtapose**
 - **Partition**
 - **Superimpose**

- **Reduce**
 - **Filter**
 - **Aggregate**
 - **Embed**

Derive

- change over time
 - most obvious & flexible of the 4 strategies
Change over time

• change any of the other choices
 – encoding itself
 – parameters
 – arrange: rearrange, reorder
 – aggregation level, what is filtered...

• why change?
 – one of four major strategies
 • change over time
 • facet data by partitioning into multiple views
 • reduce amount of data shown within view
 – embedding focus + context together
 – most obvious, powerful, flexible
 – interaction entails change
Idiom: **Realign**

- stacked bars
 - easy to compare
 - first segment
 - total bar
- align to different segment
 - supports flexible comparison

System: LineUp

Idiom: **Animated transitions**

- smooth transition from one state to another
 - alternative to jump cuts
 - support for item tracking when amount of change is limited
- example: multilevel matrix views
- example: animated transitions in statistical data graphics
 - https://vimeo.com/19278444

Manipulate

change over time

Select

Navigate

item reduction

attribute reduction

attribute reduction
Further reading

 —Chap 11: Manipulate View

Outline

• **Session 1: Principles** 9:15-10:30am
 – Analysis: What, Why, How
 – Marks and Channels, Perception
 – Color

• **Session 2: Techniques for Scaling** 10:50-11:40am
 – Manipulate: Change, Select, Navigate
 – **Facet**: Juxtapose, Partition, Superimpose
 – Reduce: Filter, Aggregate

http://www.cs.ubc.ca/~tmm/talks.html#vad17sydney
How to handle complexity: 3 more strategies

Manipulate

- **Change**
 - Juxtapose
 - Superimpose

- **Select**

- **Navigate**

Reduce

- **Filter**
- **Aggregate**
- **Embed**

Derive

- Derive

- facet data across multiple views
Facet

- **Juxtapose**

- **Partition**

- **Superimpose**

- **Coordinate Multiple Side By Side Views**
 - Share Encoding: Same/Different
 - Linked Highlighting
 - Share Data: All/Subset/None
 - Share Navigation
Idiom: **Linked highlighting**

- see how regions contiguous in one view are distributed within another
 - powerful and pervasive interaction idiom

- encoding: different
 - *multiform*

- data: all shared

Idiom: **bird’s-eye maps**

- encoding: same
- data: subset shared
- navigation: shared
 - bidirectional linking

- differences
 - viewpoint
 - (size)

- overview-detail

System: Google Maps

Idiom: **Small multiples**

- **encoding**: same
- **data**: none shared
 - different attributes for node colors
 - (same network layout)
- **navigation**: shared

System: Cerebral

Coordinate views: Design choice interaction

<table>
<thead>
<tr>
<th>Encoding</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>Subset</td>
</tr>
<tr>
<td>Same</td>
<td>Redundant</td>
</tr>
<tr>
<td>Different</td>
<td>Multiform</td>
</tr>
</tbody>
</table>

why juxtapose views?

- benefits: eyes vs memory
 - lower cognitive load to move eyes between 2 views than remembering previous state with single changing view
- costs: display area, 2 views side by side each have only half the area of one view
Idiom: Animation (change over time)

- weaknesses
 - widespread changes
 - disparate frames

- strengths
 - choreographed storytelling
 - localized differences between contiguous frames
 - animated transitions between states
Partition into views

- how to divide data between views
 - encodes association between items using spatial proximity
 - major implications for what patterns are visible
 - split according to attributes

- design choices
 - how many splits
 - all the way down: one mark per region?
 - stop earlier, for more complex structure within region?
 - order in which attribs used to split
Partitioning: List alignment

- single bar chart with grouped bars
 - split by state into regions
 - complex glyph within each region showing all ages
 - compare: easy within state, hard across ages

- small-multiple bar charts
 - split by age into regions
 - one chart per region
 - compare: easy within age, harder across states
Partitioning: Recursive subdivision

- split by type
- then by neighborhood
- then time
 - years as rows
 - months as columns

System: HIVE

Partitioning: Recursive subdivision

- switch order of splits
 - neighborhood then type
- very different patterns

Partitioning: Recursive subdivision

- different encoding for second-level regions
 - choropleth maps

Superimpose layers

• **layer**: set of objects spread out over region
 – each set is visually distinguishable group
 – extent: whole view

• design choices
 – how many layers?
 – how are layers distinguished?
 – small static set or dynamic from many possible?
 – how partitioned?
 • heavyweight with attrs vs lightweight with selection

• distinguishable layers
 – encode with different, nonoverlapping channels
 • two layers achievable, three with careful design
Static visual layering

• foreground layer: roads
 – hue, size distinguishing main from minor
 – high luminance contrast from background

• background layer: regions
 – desaturated colors for water, parks, land areas

• user can selectively focus attention
• “get it right in black and white”
 – check luminance contrast with greyscale view

Superimposing limits

- few layers, but many lines
 - up to a few dozen
 - but not hundreds

- superimpose vs juxtapose: empirical study
 - superimposed for local visual, multiple for global
 - same screen space for all multiples, single superimposed
 - tasks
 - local: maximum, global: slope, discrimination

Dynamic visual layering

• interactive, from selection
 – lightweight: click
 – very lightweight: hover

• ex: 1-hop neighbors

Further reading

 • Chap 12: Facet Into Multiple Views

Outline

• **Session 1: Principles 9:15-10:30am**
 – Analysis: What, Why, How
 – Marks and Channels, Perception
 – Color

• **Session 2: Techniques for Scaling 10:50-11:40am**
 – Manipulate: Change, Select, Navigate
 – Facet: Juxtapose, Partition, Superimpose
 – **Reduce: Filter, Aggregate**

http://www.cs.ubc.ca/~tmm/talks.html#vad17sydney
How to handle complexity: 3 more strategies

- **Manipulate**
 - Change
 - Select
 - Navigate

- **Facet**
 - Juxtapose
 - Partition
 - Superimpose

- **Reduce**
 - Filter
 - Aggregate
 - Embed

- **Derive**

 - Derive

- Additional strategy:

 - reduce what is shown within single view
Reduce items and attributes

- reduce/increase: inverses
- filter
 - pro: straightforward and intuitive
 - to understand and compute
 - con: out of sight, out of mind
- aggregation
 - pro: inform about whole set
 - con: difficult to avoid losing signal
- not mutually exclusive
 - combine filter, aggregate
 - combine reduce, facet, change, derive
Idiom: **histogram**

- static item aggregation
- task: find distribution
- data: table
- derived data
 - new table: keys are bins, values are counts
- bin size crucial
 - pattern can change dramatically depending on discretization
 - opportunity for interaction: control bin size on the fly
Idiom: **boxplot**

- static item aggregation
- task: find distribution
- data: table
- derived data
 - 5 quant attrs
 - median: central line
 - lower and upper quartile: boxes
 - lower upper fences: whiskers
 - values beyond which items are outliers
 - outliers beyond fence cutoffs explicitly shown

[40 years of boxplots. Wickham and Stryjewski. 2012. had.co.nz]
Idiom: Hierarchical parallel coordinates

- dynamic item aggregation
- derived data: hierarchical clustering
- encoding:
 - cluster band with variable transparency, line at mean, width by min/max values
 - color by proximity in hierarchy

Dimensionality reduction

• attribute aggregation
 – derive low-dimensional target space from high-dimensional measured space
 – use when you can’t directly measure what you care about
 • true dimensionality of dataset conjectured to be smaller than dimensionality of measurements
 • latent factors, hidden variables

Tumor Measurement Data

data: 9D measured space

\[\text{DR} \]

derived data: 2D target space
Idiom: **Dimensionality reduction for documents**

Task 1
- **Input:** HD data
- **Output:** 2D data
- **What?** In high-dimensional data
- **Why?** Produce
- **What?** In 2D data
- **Why?** Derive

Task 2
- **Input:** 2D data
- **Output:** Scatterplot Clusters & points
- **What?** In 2D data
- **Why?** Discover
- **What?** In Scatterplot Clusters & points
- **Why?** Explore
- **How?** Encode
- **Identify**
- **Select**

Task 3
- **Input:** Scatterplot Clusters & points
- **Output:** Labels for clusters
- **What?** In Scatterplot Clusters & points
- **Why?** Produce
- **What?** In Labels for clusters
- **Why?** Annotate
Further reading

 – Chap 13: Reduce Items and Attributes

More Information

• this talk
 http://www.cs.ubc.ca/~tmm/talks.html#vad17sydney

• book page (including tutorial lecture slides)
 http://www.cs.ubc.ca/~tmm/vadbook
 – 20% promo code for book+ebook combo: HVN17

 – illustrations: Eamonn Maguire

• papers, videos, software, talks, full courses
 http://www.cs.ubc.ca/group/infovis
 http://www.cs.ubc.ca/~tmm

@tamaramunzner