Visualization Analysis & Design
Full-Day Tutorial

Tamara Munzner
Department of Computer Science
University of British Columbia
VIS 2017 Tutorial
September 2017, Phoenix AZ

www.cs.ubc.ca/~tmm/talks.html#vad17fullday
@tamaramunzner
Outline

• Session 1 8:30-10:10am
 Visualization Analysis Framework
 – Introduction: Definitions
 – Analysis: What, Why, How
 – Marks and Channels

• Session 2 10:30am-12:10pm
 Spatial Layout
 – Arrange Tables
 – Arrange Spatial Data
 – Arrange Networks and Trees

• Session 3 2:00-3:40pm
 Color & Interaction
 – Map Color
 – Manipulate: Change, Select, Navigate
 – Facet: Juxtapose, Partition, Superimpose

• Session 4 4:15-5:55pm
 Guidelines & Methods
 – Reduce: Filter, Aggregate
 – Rules of Thumb
 – Design Study Methodology

http://www.cs.ubc.ca/~tmm/talks.html#vad17fullday @tamaramunzner
Defining visualization (vis)

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

Why?...
Visualization (vis) defined & motivated

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

Visualization is suitable when there is a need to augment human capabilities rather than replace people with computational decision-making methods.

- human in the loop needs the details & no trusted automatic solution exists
 - doesn't know exactly what questions to ask in advance
 - exploratory data analysis
 - speed up through human-in-the-loop visual data analysis
 - present known results to others
 - stepping stone towards automation
 - before model creation to provide understanding
 - during algorithm creation to refine, debug, set parameters
 - before or during deployment to build trust and monitor
Why use an external representation?

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

- external representation: replace cognition with perception
Why depend on vision?

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

• human visual system is high-bandwidth channel to brain
 – overview possible due to background processing
 • subjective experience of seeing everything simultaneously
 • significant processing occurs in parallel and pre-attentively

• sound: lower bandwidth and different semantics
 – overview not supported
 • subjective experience of sequential stream

• touch/haptics: impoverished record/replay capacity
 – only very low-bandwidth communication thus far

• taste, smell: no viable record/replay devices
Why represent all the data?

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

- summaries lose information, details matter
 - confirm expected and find unexpected patterns
 - assess validity of statistical model

Anscombe’s Quartet

Identical statistics

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>x mean</td>
<td>9</td>
</tr>
<tr>
<td>x variance</td>
<td>10</td>
</tr>
<tr>
<td>y mean</td>
<td>7.5</td>
</tr>
<tr>
<td>y variance</td>
<td>3.75</td>
</tr>
<tr>
<td>x/y correlation</td>
<td>0.816</td>
</tr>
</tbody>
</table>

[Same Stats, Different Graphs](https://www.youtube.com/watch?v=DbJyPELmhJc)
Why focus on tasks and effectiveness?

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks and effectively.

• effectiveness requires match between data/task and representation
 – set of representations is huge
 – many are ineffective mismatch for specific data/task combo
 – increases chance of finding good solutions if you understand full space of possibilities

• what counts as effective?
 – novel: enable entirely new kinds of analysis
 – faster: speed up existing workflows

• how to validate effectiveness
 – many methods, must pick appropriate one for your context
What resource limitations are we faced with?

Vis designers must take into account three very different kinds of resource limitations: those of computers, of humans, and of displays.

- **computational limits**
 - processing time
 - system memory
- **human limits**
 - human attention and memory
- **display limits**
 - pixels are precious resource, the most constrained resource
 - **information density**: ratio of space used to encode info vs unused whitespace
 - tradeoff between clutter and wasting space, find sweet spot between dense and sparse
Why analyze?

- imposes structure on huge design space
 - scaffold to help you think systematically about choices
 - analyzing existing as stepping stone to designing new
 - most possibilities ineffective for particular task/data combination

Why?

- Tree

Why?

- Actions
 - Present
 - Locate
 - Identify

How?

- SpaceTree
 - Encode
 - Navigate
 - Select
 - Filter
 - Aggregate

- TreeJuxtaposer
 - Encode
 - Navigate
 - Select
 - Arrange

Further reading

 – Chap 1: What's Vis, and Why Do It?
Outline

- **Session 1** 8:30-10:10am
 Visualization Analysis Framework
 - Introduction: Definitions
 - Analysis: What, Why, How
 - Marks and Channels

- **Session 2** 10:30am-12:10pm
 Spatial Layout
 - Arrange Tables
 - Arrange Spatial Data
 - Arrange Networks and Trees

- **Session 3** 2:00-3:40pm
 Color & Interaction
 - Map Color
 - Manipulate: Change, Select, Navigate
 - Facet: Juxtapose, Partition, Superimpose

- **Session 4** 4:15-5:55pm
 Guidelines & Methods
 - Reduce: Filter, Aggregate
 - Rules of Thumb
 - Design Study Methodology

http://www.cs.ubc.ca/~tmm/talks.html#vad17fullday

@tamaramunzner
Nested model: Four levels of vis design

• domain situation
 – who are the target users?

• abstraction
 – translate from specifics of domain to vocabulary of vis
 • what is shown? data abstraction
 • why is the user looking at it? task abstraction

• idiom
 – how is it shown?
 • visual encoding idiom: how to draw
 • interaction idiom: how to manipulate

• algorithm
 – efficient computation

Why is validation difficult?

- different ways to get it wrong at each level

- **Domain situation**
 - You misunderstood their needs

- **Data/task abstraction**
 - You’re showing them the wrong thing

- **Visual encoding/interaction idiom**
 - The way you show it doesn’t work

- **Algorithm**
 - Your code is too slow
Why is validation difficult?

• solution: use methods from different fields at each level

- **domain situation**
 - Observe target users using existing tools

- **data/task abstraction**
 - **visual encoding/interaction idiom**
 - Justify design with respect to alternatives
 - **algorithm**
 - Measure system time/memory
 - Analyze computational complexity
 - Analyze results qualitatively
 - Measure human time with lab experiment (*lab study*)

- **anthropology/ethnography**
 - Observe target users after deployment (*field study*)
 - Measure adoption

Datasets

- **Data Types**
 - Items
 - Attributes
 - Links
 - Positions
 - Grids

- **Data and Dataset Types**
 - Tables
 - Items
 - Attributes
 - Networks & Trees
 - Items (nodes)
 - Grids
 - Positions
 - Attributes
 - Fields
 - Items
 - Positions
 - Items
 - Geometry
 - Items
 - Positions
 - Clusters, Sets, Lists
 - Items

Attributes

- **Attribute Types**
 - Categorical
 - + • ● □ ▲
 - Ordered
 - Ordinal
 - Quantitative

Dataset Types

- **Tables**
 - Attributes (columns)
 - Items (rows)

- **Networks**
 - Link
 - Node (item)

- **Fields (Continuous)**
 - Grid of positions

- **Multidimensional Table**
 - Cell containing value

- **Trees**

Dataset Availability

- **Static**
- **Dynamic**

Ordering Direction

- **Sequential**
- **Diverging**
- **Cyclic**
Three major datatypes

Dataset Types

- **Tables**
 - Items (rows)
 - Attributes (columns)
 - Cell containing value

- **Multidimensional Table**
 - Key 1
 - Key 2
 - Attributes
 - Value in cell

- **Networks**
 - Link
 - Node (item)

- **Trees**
 - Value in cell

- **Spatial**
 - Fields (Continuous)
 - Geometry (Spatial)

 - Grid of positions
 - Cell
 - Attributes (columns)
 - Value in cell

 - Position

- **Spatial Networks**

 - Visualization vs computer graphics
 - Geometry is design decision
Dataset and data types

Data and Dataset Types

<table>
<thead>
<tr>
<th>Tables</th>
<th>Networks & Trees</th>
<th>Fields</th>
<th>Geometry</th>
<th>Clusters, Sets, Lists</th>
</tr>
</thead>
<tbody>
<tr>
<td>Items</td>
<td>Items (nodes)</td>
<td>Grids</td>
<td>Items</td>
<td>Items</td>
</tr>
<tr>
<td>Attributes</td>
<td>Links</td>
<td>Positions</td>
<td>Positions</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Attributes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data Types

- Items
- Attributes
- Links
- Positions
- Grids

Dataset Availability

- Static
- Dynamic
Attribute types

 Attribute Types

 ➔ Categorical ➔ Ordered ➔ Ordinal ➔ Quantitative

 ➔ Categorical ➔ Ordered ➔ Ordinal ➔ Quantitative

 Ordering Direction

 ➔ Sequential ➔ Diverging ➔ Cyclic
• \{action, target\} pairs
 – discover distribution
 – compare trends
 – locate outliers
 – browse topology

<table>
<thead>
<tr>
<th>Search</th>
<th>Target known</th>
<th>Target unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location known</td>
<td>• • Lookup</td>
<td>• • Browse</td>
</tr>
<tr>
<td>Location unknown</td>
<td>• • Locate</td>
<td>• • Explore</td>
</tr>
</tbody>
</table>

Why?
Actions: Analyze

• consume
 – discover vs present
 • classic split
 • aka explore vs explain
 – enjoy
 • newcomer
 • aka casual, social

• produce
 – annotate, record
 – derive
 • crucial design choice
Derive

• don’t just draw what you’re given!
 – decide what the right thing to show is
 – create it with a series of transformations from the original dataset
 – draw that

• one of the four major strategies for handling complexity

Original Data

Derived Data

trade balance = exports – imports
Analysis example: Derive one attribute

- Strahler number
 - centrality metric for trees/networks
 - derived quantitative attribute
 - draw top 5K of 500K for good skeleton

Actions: Search, query

• what does user know? → Search
 — target, location

• how much of the data matters?
 — one, some, all

<table>
<thead>
<tr>
<th>Location known</th>
<th>Target known</th>
<th>Target unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lookup</td>
<td></td>
<td>Browse</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location unknown</th>
<th>Target known</th>
<th>Target unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locate</td>
<td></td>
<td>Explore</td>
</tr>
</tbody>
</table>

• independent choices for each of these three levels
 — analyze, search, query
 — mix and match
Why: Targets

☑️ All Data
- Trends
- Outliers
- Features

☑️ Attributes
- One
 - Distribution
 - Extremes
- Many
 - Dependency
 - Correlation
 - Similarity

☑️ Network Data
- Topology
 - Paths

☑️ Spatial Data
- Shape
Encode

- Arrange
 - Express
 - Separate
- Order
 - Align
- Use

Manipulate

- Map
 - from categorical and ordered attributes
 - Express
- Color
 - Hue
 - Saturation
 - Luminance
- Size, Angle, Curvature, ...
- Shape
 - + ● □ △
- Motion
 - Direction, Rate, Frequency, ...

Facet

- Change
- Juxtapose
- Partition
- Superimpose

Reduce

- Filter
- Aggregate
- Embed
Further reading

 – Chap 2: What: Data Abstraction
 – Chap 3: Why: Task Abstraction

Outline

• **Session 1 8:30-10:10am**
 Visualization Analysis Framework
 – Introduction: Definitions
 – Analysis: What, Why, How
 – Marks and Channels

• **Session 2 10:30am-12:10pm**
 Spatial Layout
 – Arrange Tables
 – Arrange Spatial Data
 – Arrange Networks and Trees

• **Session 3 2:00-3:40pm**
 Color & Interaction
 – Map Color
 – Manipulate: Change, Select, Navigate
 – Facet: Juxtapose, Partition, Superimpose

• **Session 4 4:15-5:55pm**
 Guidelines & Methods
 – Reduce: Filter, Aggregate
 – Rules of Thumb
 – Design Study Methodology

http://www.cs.ubc.ca/~tmm/talks.html#vad17fullday
@tamaramunzner
Visual encoding

- analyze idiom structure
Definitions: Marks and channels

• marks
 – geometric primitives

• channels
 – control appearance of marks
 – can redundantly code with multiple channels
Visual encoding

• analyze idiom structure
 – as combination of marks and channels

1: vertical position
 mark: line

2: vertical position, horizontal position
 mark: point

3: vertical position, horizontal position, color hue
 mark: point

4: vertical position, horizontal position, color hue, size (area)
 mark: point
Channels

Position on common scale

Position on unaligned scale

Length (1D size)

Tilt/angle

Area (2D size)

Depth (3D position)

Color luminance

Color saturation

Curvature

Volume (3D size)

Spatial region

Color hue

Motion

Shape

Magnitude

Channels: Expressiveness types and effectiveness rankings

Ordered Attributes Identity Channels: Categorical Attributes

Spatial region

Color hue

Motion

Shape
Channels: Matching Types

Magnitude Channels: Ordered Attributes
- Position on common scale
- Position on unaligned scale
- Length (1D size)
- Tilt/angle
- Area (2D size)
- Depth (3D position)
- Color luminance
- Color saturation
- Curvature
- Volume (3D size)

Identity Channels: Categorical Attributes
- Spatial region
- Color hue
- Motion
- Shape

• expressiveness principle
 – match channel and data characteristics
Channels: Rankings

- **Magnitude Channels: Ordered Attributes**
 - Position on common scale
 - Position on unaligned scale
 - Length (1D size)
 - Tilt/angle
 - Area (2D size)
 - Depth (3D position)
 - Color luminance
 - Color saturation
 - Curvature
 - Volume (3D size)

- **Identity Channels: Categorical Attributes**
 - Spatial region
 - Color hue
 - Motion
 - Shape

- **expressiveness principle**
 - match channel and data characteristics

- **effectiveness principle**
 - encode most important attributes with highest ranked channels
Channels: Expressiveness types and effectiveness rankings

- **Magnitude Channels: Ordered Attributes**
 - Position on common scale
 - Position on unaligned scale
 - Length (1D size)
 - Tilt/angle
 - Area (2D size)
 - Depth (3D position)
 - Color luminance
 - Color saturation
 - Curvature
 - Volume (3D size)

- **Identity Channels: Categorical Attributes**
 - Spatial region
 - Color hue
 - Motion
 - Shape

- **Expressiveness principle**
 - Match channel and data characteristics

- **Effectiveness principle**
 - Encode most important attributes with highest ranked channels
 - Spatial position ranks high for both
Accuracy: Fundamental Theory

Steven’s Psychophysical Power Law: $S = I^N$
Accuracy: Vis experiments

Cleveland & McGill’s Results

Crowdsourced Results

Positions

Angles

Circular areas

Rectangular areas (aligned or in a treemap)

Discriminability: How many usable steps?

• must be sufficient for number of attribute levels to show
 – linewidth: few bins

[mappa.mundi.net/maps/maps_014/telegeography.html]
Separability vs. Integrality

Position
+ Hue (Color)

Fully separable
2 groups each

Size
+ Hue (Color)

Some interference
2 groups each

Width
+ Height

Some/significant interference
3 groups total: integral area

Red
+ Green

Major interference
4 groups total: integral hue
Popout

• find the red dot
 – how long does it take?

• parallel processing on many individual channels
 – speed independent of distractor count
 – speed depends on channel and amount of difference from distractors

• serial search for (almost all) combinations
 – speed depends on number of distractors
• many channels: tilt, size, shape, proximity, shadow direction, …
• but not all! parallel line pairs do not pop out from tilted pairs
Grouping

• containment
• connection

Marks as Links

→ Containment

→ Connection

Identity Channels: Categorical Attributes

Spatial region

Color hue

Motion

Shape

• proximity
 – same spatial region
• similarity
 – same values as other categorical channels
Relative vs. absolute judgements

• perceptual system mostly operates with relative judgements, not absolute.
 – that’s why accuracy increases with common frame/scale and alignment
 – Weber’s Law: ratio of increment to background is constant
 • filled rectangles differ in length by 1:9, difficult judgement
 • white rectangles differ in length by 1:2, easy judgement

Relative luminance judgements

- perception of luminance is contextual based on contrast with surroundings
Relative color judgements

- color constancy across broad range of illumination conditions
Further reading

 – Chap 5: Marks and Channels

Outline

- **Session 1** 8:30-10:10am
 Visualization Analysis Framework
 - Introduction: Definitions
 - Analysis: What, Why, How
 - Marks and Channels

- **Session 2** 10:30am-12:10pm
 Spatial Layout
 - Arrange Tables
 - Arrange Spatial Data
 - Arrange Networks and Trees

- **Session 3** 2:00-3:40pm
 Color & Interaction
 - Map Color
 - Manipulate: Change, Select, Navigate
 - Facet: Juxtapose, Partition, Superimpose

- **Session 4** 4:15-5:55pm
 Guidelines & Methods
 - Reduce: Filter, Aggregate
 - Rules of Thumb
 - Design Study Methodology

http://www.cs.ubc.ca/~tmm/talks.html#vad17fullday @tamaramunzner
How?

<table>
<thead>
<tr>
<th>Encode</th>
<th>Manipulate</th>
<th>Facet</th>
<th>Reduce</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arrange</td>
<td>Change</td>
<td>Juxtapose</td>
<td>Filter</td>
</tr>
<tr>
<td>➔ Express ➔ Separate</td>
<td>➔ Hue ➔ Saturation ➔ Luminance</td>
<td>➔ Partition</td>
<td>➔ Filter</td>
</tr>
<tr>
<td>➔ Order ➔ Align</td>
<td>➔ Select</td>
<td>➔ Superimpose</td>
<td>➔ Aggregate</td>
</tr>
<tr>
<td>➔ Use</td>
<td>➔ Navigate</td>
<td>➔ Embed</td>
<td></td>
</tr>
</tbody>
</table>

- **Map** from **categorical** and **ordered** attributes
 - **Color**
 - **Hue** ➔ **Saturation** ➔ **Luminance**
 - **Size, Angle, Curvature, ...**
 - **Shape**
 - □ □ □ 🔐 🔐 🔐 🔐 🔐
 - **Motion**
 - *Direction, Rate, Frequency, ...*

What?

Why?

How?
Encode tables: Arrange space

Encode

Arrange

Express

Separate

Order

Align
Arrange tables

Express Values

Separate, Order, Align Regions

Separate Order

Align

Axis Orientation

Rectilinear

Parallel

Radial

Layout Density

Dense

Space-Filling

1 Key
List

2 Keys
Matrix

3 Keys
Volume

Many Keys
Recursive Subdivision
Keys and values

• key
 – independent attribute
 – used as unique index to look up items
 – simple tables: 1 key
 – multidimensional tables: multiple keys

• value
 – dependent attribute, value of cell

• classify arrangements by key count
 – 0, 1, 2, many...

Express Values

1 Key
List

2 Keys
Matrix

3 Keys
Volume

Many Keys
Recursive Subdivision
Idiom: **scatterplot**

- **express values**
 - quantitative attributes
- **no keys, only values**
 - data
 - 2 quant attrs
 - mark: points
 - channels
 - horiz + vert position
- **tasks**
 - find trends, outliers, distribution, correlation, clusters
- **scalability**
 - hundreds of items

Some keys: Categorical regions

- **regions**: contiguous bounded areas distinct from each other
 - using space to *separate* (proximity)
 - following expressiveness principle for categorical attributes
- use ordered attribute to *order* and *align* regions
Idiom: bar chart

- one key, one value
 - data
 - 1 categ attrib, 1 quant attrib
 - mark: lines
 - channels
 - length to express quant value
 - spatial regions: one per mark
 - separated horizontally, aligned vertically
 - ordered by quant attrib
 » by label (alphabetical), by length attrib (data-driven)
 - task
 - compare, lookup values
 - scalability
 - dozens to hundreds of levels for key attrib
LIMITATION: Hard to know rank. What’s the 4th most? The 7th?

[Slide courtesy of Ben Jones]
Separated, Aligned and Ordered

[Slide courtesy of Ben Jones]
Separated but not Ordered or Aligned

LIMITATION: Hard to make comparisons

[Slide courtesy of Ben Jones]
Idiom: **line chart / dot plot**

- one key, one value
 - data
 - 2 quant attribs
 - mark: points
 - line connection marks between them
 - channels
 - aligned lengths to express quant value
 - separated and ordered by key attrib into horizontal regions
- task
 - find trend
 - connection marks emphasize ordering of items along key axis by explicitly showing relationship between one item and the next
- scalability
 - hundreds of key levels, hundreds of value levels
Idiom: **stacked bar chart**

- one more key
 - data
 - 2 categ attrib, 1 quant attrib
 - mark: vertical stack of line marks
 - glyph: composite object, internal structure from multiple marks
 - channels
 - length and color hue
 - spatial regions: one per glyph
 - aligned: full glyph, lowest bar component
 - unaligned: other bar components
 - task
 - part-to-whole relationship
 - scalability
 - several to one dozen levels for stacked attrib

Idiom: **streamgraph**

- generalized stacked graph
 - emphasizing horizontal continuity
 - vs vertical items
- data
 - 1 categ key attrib (artist)
 - 1 ordered key attrib (time)
 - 1 quant value attrib (counts)
- derived data
 - geometry: layers, where height encodes counts
 - 1 quant attrib (layer ordering)
- scalability
 - hundreds of time keys
 - dozens to hundreds of artist keys
 - more than stacked bars, since most layers don’t extend across whole chart

Choosing bar vs line charts

- depends on type of key attrib
 - bar charts if categorical
 - line charts if ordered
- do not use line charts for categorical key attribs
 - violates expressiveness principle
 - implication of trend so strong that it overrides semantics!
 - “The more male a person is, the taller he/she is”

Chart axes

• labelled axis is critical
• avoid cropping y-axis
 – include 0 at bottom left
 – or slope misleads

• dual axes controversial
 – acceptable if commensurate
 – beware, very easy to mislead!

http://www.thefunctionalart.com/2015/10/if-you-see-bullshit-say-bullshit.html
Idiom: connected scatterplots

• scatterplot with line connection marks
 – popular in journalism
 – horiz + vert axes: value attribs
 – line connection marks: temporal order
 – alternative to dual-axis charts
 • horiz: time
 • vert: two value attribs

• empirical study
 – engaging, but correlation unclear

http://steveharoz.com/research/connected_scatterplot/
Idiom: Indexed line charts

• data: 2 quant attires
 – 1 key + 1 value
• derived data: new quant value attrib
 – index
 – plot instead of original value
• task: show change over time
 – principle: normalized, not absolute
• scalability
 – same as standard line chart

https://public.tableau.com/profile/ben.jones#!/vizhome/CAStateRevenues/Revenues
Idiom: **Gantt charts**

- one key, two (related) values
 - data
 - 1 categ attrib, 2 quant attribs
 - mark: line
 - length: duration
- channels
 - horiz position: start /end times
 - horiz length: duration
- task
 - emphasize temporal overlaps, start/end dependencies between items
- scalability
 - dozens of key levels
 - hundreds of value levels

Idiom: heatmap

- two keys, one value
 - data
 - 2 categ attribs (gene, experimental condition)
 - 1 quant attrib (expression levels)
 - marks: area
 - separate and align in 2D matrix
 - indexed by 2 categorical attributes
 - channels
 - color by quant attrib
 - (ordered diverging colormap)
 - task
 - find clusters, outliers
 - scalability
 - 1M items, 100s of categ levels, ~10 quant attrib levels
→ Axis Orientation

→ Rectilinear

→ Parallel

→ Radial
Idioms: *scatterplot matrix, parallel coordinates*

- **scatterplot matrix (SPLOM)**
 - rectilinear axes, point mark
 - all possible pairs of axes
 - scalability
 - one dozen attribs
 - dozens to hundreds of items

- **parallel coordinates**
 - parallel axes, jagged line representing item
 - rectilinear axes, item as point
 - axis ordering is major challenge
 - scalability
 - dozens of attribs
 - hundreds of items

68

Task: Correlation

• scatterplot matrix
 – positive correlation
 • diagonal low-to-high
 – negative correlation
 • diagonal high-to-low
 – uncorrelated
• parallel coordinates
 – positive correlation
 • parallel line segments
 – negative correlation
 • all segments cross at halfway point
 – uncorrelated
 • scattered crossings

Idioms: radial bar chart, star plot

• radial bar chart
 – radial axes meet at central ring, line mark

• star plot
 – radial axes, meet at central point, line mark

• bar chart
 – rectilinear axes, aligned vertically

• accuracy
 – length unaligned with radial
 • less accurate than aligned with rectilinear
Idioms: **pie chart, polar area chart**

- **pie chart**
 - area marks with angle channel
 - accuracy: angle/area less accurate than line length
 - arclength also less accurate than line length

- **polar area chart**
 - area marks with length channel
 - more direct analog to bar charts

- **data**
 - 1 categ key attrib, 1 quant value attrib

- **task**
 - part-to-whole judgements

Idioms: **normalized stacked bar chart**

- task
 - part-to-whole judgements

- **normalized stacked bar chart**
 - stacked bar chart, normalized to full vert height
 - single stacked bar equivalent to full pie
 - high information density: requires narrow rectangle

- pie chart
 - information density: requires large circle

http://bl.ocks.org/mbostock/3887235
http://bl.ocks.org/mbostock/3886208
http://bl.ocks.org/mbostock/3886394
Idiom: *glyphmaps*

- rectilinear good for linear vs nonlinear trends

- radial good for cyclic patterns

Orientation limitations

• rectilinear: scalability wrt #axes
 • 2 axes best
 • 3 problematic
 – more in afternoon
 • 4+ impossible

• parallel: unfamiliarity, training time

• radial: perceptual limits
 – angles lower precision than lengths
 – asymmetry between angle and length
 • can be exploited!

Layout Density

Dense

Further reading

 —Chap 7: Arrange Tables

Outline

• **Session 1 8:30-10:10am**
 Visualization Analysis Framework
 – Introduction: Definitions
 – Analysis: What, Why, How
 – Marks and Channels

• **Session 2 10:30am-12:10pm**
 Spatial Layout
 – Arrange Tables
 – Arrange Spatial Data
 – Arrange Networks and Trees

• **Session 3 2:00-3:40pm**
 Color & Interaction
 – Map Color
 – Manipulate: Change, Select, Navigate
 – Facet: Juxtapose, Partition, Superimpose

• **Session 4 4:15-5:55pm**
 Guidelines & Methods
 – Reduce: Filter, Aggregate
 – Rules of Thumb
 – Design Study Methodology

http://www.cs.ubc.ca/~tmm/talks.html#vad17fullday
Arrange spatial data

- **Use Given**
 - Geometry
 - Geographic
 - Other Derived

- **Spatial Fields**
 - Scalar Fields (one value per cell)
 - Isocontours
 - Direct Volume Rendering
 - Vector and Tensor Fields (many values per cell)
 - Flow Glyphs (local)
 - Geometric (sparse seeds)
 - Textures (dense seeds)
 - Features (globally derived)
Idiom: **choropleth map**

- **use** given spatial data
 - when central task is understanding spatial relationships

- **data**
 - geographic geometry
 - table with 1 quant attribute per region

- **encoding**
 - use given geometry for area mark boundaries
 - sequential segmented colormap [*more later*]
 - (geographic heat map)

http://bl.ocks.org/mbostock/4060606
Population maps trickiness

• beware!
• absolute vs relative again
 • population density vs per capita
• investigate with Ben Jones Tableau Public demo
 • http://public.tableau.com/profile/ben.jones#!/vizhome/PopVsFin/PopVsFin

Are Maps of Financial Variables just Population Maps?

• yes, unless you look at per capita (relative) numbers

[https://xkcd.com/1138]
Idiom: Bayesian surprise maps

- use models of expectations to highlight surprising values
- confounds (population) and variance (sparsity)

[Surprise! Bayesian Weighting for De-Biasing Thematic Maps. Correll and Heer. Proc InfoVis 2016]

Idiom: **topographic map**

- **data**
 - geographic geometry
 - scalar spatial field
 - 1 quant attribute per grid cell

- **derived data**
 - isoline geometry
 - isocontours computed for specific levels of scalar values
Idioms: **isosurfaces, direct volume rendering**

- **data**
 - scalar spatial field
 - 1 quant attribute per grid cell

- **task**
 - shape understanding, spatial relationships

- **isosurface**
 - derived data: isocontours computed for specific levels of scalar values

- **direct volume rendering**
 - transfer function maps scalar values to color, opacity

Vector and tensor fields

- data
 - many attributes per cell
- idiom families
 - flow glyphs
 - purely local
 - geometric flow
 - derived data from tracing particle trajectories
 - sparse set of seed points
 - texture flow
 - derived data, dense seeds
- feature flow
 - global computation to detect features
 - encoded with one of methods above

Vector fields

- empirical study tasks
 - finding critical points, identifying their types
 - identifying what type of critical point is at a specific location
 - predicting where a particle starting at a specified point will end up (advection)

Idiom: similarity-clustered streamlines

- data
 - 3D vector field
- derived data (from field)
 - streamlines: trajectory particle will follow
- derived data (per streamline)
 - curvature, torsion, tortuosity
 - signature: complex weighted combination
 - compute cluster hierarchy across all signatures
 - encode: color and opacity by cluster
- tasks
 - find features, query shape
- scalability
 - millions of samples, hundreds of streamlines

Further reading

 – Chap 8: Arrange Spatial Data

Outline

• **Session 1 8:30-10:10am**
 Visualization Analysis Framework
 – Introduction: Definitions
 – Analysis: What, Why, How
 – Marks and Channels

• **Session 2 10:30am-12:10pm**
 Spatial Layout
 – Arrange Tables
 – Arrange Spatial Data
 – Arrange Networks and Trees

• **Session 3 2:00-3:40pm**
 Color & Interaction
 – Map Color
 – Manipulate: Change, Select, Navigate
 – Facet: Juxtapose, Partition, Superimpose

• **Session 4 4:15-5:55pm**
 Guidelines & Methods
 – Reduce: Filter, Aggregate
 – Rules of Thumb
 – Design Study Methodology

http://www.cs.ubc.ca/~tmm/talks.html#vad17fullday @tamaramunzner
Arrange networks and trees

- **Node–Link Diagrams**
 - Connection Marks
 - ![Node–Link Diagram](image)

- **Adjacency Matrix**
 - Derived Table
 - ![Adjacency Matrix](image)

- **Enclosure**
 - Containment Marks
 - ![Enclosure](image)
Idiom: **force-directed placement**

- visual encoding
 - link connection marks, node point marks

- considerations
 - spatial position: no meaning directly encoded
 - left free to minimize crossings
 - proximity semantics?
 - sometimes meaningful
 - sometimes arbitrary, artifact of layout algorithm
 - tension with length
 - long edges more visually salient than short

- tasks
 - explore topology; locate paths, clusters

- scalability
 - node/edge density $E < 4N$

[Diagram](http://mbostock.github.com/d3/ex/force.html)
Idiom: **sfdp** (multi-level force-directed placement)

- **data**
 - original: network
 - derived: cluster hierarchy atop it
- **considerations**
 - better algorithm for same encoding technique
 - same: fundamental use of space
 - hierarchy used for algorithm speed/quality but not shown explicitly
 - (more on algorithm vs encoding in afternoon)
- **scalability**
 - nodes, edges: 1K-10K
 - hairball problem eventually hits

Idiom: adjacency matrix view

- **data:** network
 - transform into same data/encoding as heatmap
- **derived data:** table from network
 - 1 quant attrib
 - weighted edge between nodes
 - 2 categ attribs: node list x 2
- **visual encoding**
 - cell shows presence/absence of edge
- **scalability**
 - 1K nodes, 1M edges

![Matrix view of a network](image)

Figure 7.5: Comparing matrix and node-link views of a five-node network. a) Matrix view. b) Node-link view. From [Henry et al. 07], Figure 3b and 3a. (Permission needed.)

Matrix views of networks can achieve very high information density, up to a limit of one thousand nodes and one million edges, just like cluster heatmaps and all other matrix views that uses small area marks.

Connection vs. adjacency comparison

• adjacency matrix strengths
 – predictability, scalability, supports reordering
 – some topology tasks trainable

• node-link diagram strengths
 – topology understanding, path tracing
 – intuitive, no training needed

• empirical study
 – node-link best for small networks
 – matrix best for large networks
 • if tasks don’t involve topological structure!

Idiom: radial node-link tree

• data
 – tree
• encoding
 – link connection marks
 – point node marks
 – radial axis orientation
 • angular proximity: siblings
 • distance from center: depth in tree
• tasks
 – understanding topology, following paths
• scalability
 – 1K - 10K nodes

Idiom: **treemap**

- **data**
 - tree
 - 1 quant attrib at leaf nodes

- **encoding**
 - area containment marks for hierarchical structure
 - rectilinear orientation
 - size encodes quant attrib

- **tasks**
 - query attribute at leaf nodes

- **scalability**
 - 1M leaf nodes

Link marks: Connection and containment

• marks as links (vs. nodes)
 – common case in network drawing
 – 1D case: connection
 • ex: all node-link diagrams
 • emphasizes topology, path tracing
 • networks and trees
 – 2D case: containment
 • ex: all treemap variants
 • emphasizes attribute values at leaves (size coding)
 • only trees
Tree drawing idioms comparison

• data shown
 – link relationships
 – tree depth
 – sibling order

• design choices
 – connection vs containment link marks
 – rectilinear vs radial layout
 – spatial position channels

• considerations
 – redundant? arbitrary?
 – information density?
 • avoid wasting space

Further reading

 --Chap 9: Arrange Networks and Trees

Outline

- **Session 1 8:30-10:10am**
 Visualization Analysis Framework
 - Introduction: Definitions
 - Analysis: What, Why, How
 - Marks and Channels

- **Session 2 10:30am-12:10pm**
 Spatial Layout
 - Arrange Tables
 - Arrange Spatial Data
 - Arrange Networks and Trees

- **Session 3 2:00-3:40pm**
 Color & Interaction
 - Map Color
 - Manipulate: Change, Select, Navigate
 - Facet: Juxtapose, Partition, Superimpose

- **Session 4 4:15-5:55pm**
 Guidelines & Methods
 - Reduce: Filter, Aggregate
 - Rules of Thumb
 - Design Study Methodology

http://www.cs.ubc.ca/~tmm/talks.html#vad17fullday @tamaramunzner
Idiom design choices: Encode

- **Why?**
 - What?
 - Why?
 - How?

- **How?**
 - Arrange
 - Express
 - Order
 - Use
 - Separate
 - Align

- **Map**
 - from **categorical** and ordered attributes
 - Color
 - **Hue**
 - **Saturation**
 - **Luminance**
 - Size, Angle, Curvature, ...
 - Shape
 - Motion
 - Direction, Rate, Frequency, ...

- **Use**
 - Map
 - Color
 - Shape
 - Motion
Categorical vs ordered color

Decomposing color

• first rule of color: do not talk about color!
 – color is confusing if treated as monolithic

• decompose into three channels
 – ordered can show magnitude
 • luminance: how bright
 • saturation: how colorful
 – categorical can show identity
 • hue: what color

• channels have different properties
 – what they convey directly to perceptual system
 – how much they can convey: how many discriminable bins can we use?
Spectral sensitivity

![Graph showing the relative sensitivity of the human eye across the visible spectrum, with wavelengths from 400 nm (UV) to 700 nm (IR). The graph peaks in the middle of the visible spectrum, indicating maximum sensitivity.]
Luminance

• need luminance for edge detection
 – fine-grained detail only visible through luminance contrast
 – legible text requires luminance contrast!

• intrinsic perceptual ordering
Opponent color and color deficiency

• perceptual processing before optic nerve
 – one achromatic luminance channel (L*)
 – edge detection through luminance contrast
 – 2 chroma channels
 – red-green (a*) & yellow-blue axis (b*)

• “color blind”: one axis has degraded acuity
 – 8% of men are red/green color deficient
 – blue/yellow is rare

[Luminance information] [Chroma information]

Color spaces

- CIE L*a*b*: good for computation
 - L*: intuitive: perceptually linear luminance
 - a*b* axes: perceptually linear but nonintuitive
- RGB: good for display hardware
 - poor for encoding
- HSL/HSV: somewhat better for encoding
 - hue/saturation wheel intuitive
 - beware: only pseudo-perceptual!
 - lightness (L) or value (V) ≠ luminance or L*
- Luminance, hue, saturation
 - good for encoding
 - but not standard graphics/tools colorspace

[https://en.wikipedia.org/wiki/HSL_and_HSV]
Designing for color deficiency: Check with simulator

Normal vision Deuteranope Protanope Tritanope

http://rehue.net

Designing for color deficiency: Avoid encoding by hue alone

- redundantly encode
 - vary luminance
 - change shape
Color deficiency: Reduces color to 2 dimensions

Normal

Protanope

Deuteranope

Tritanope

Designing for color deficiency: Blue-Orange is safe

Bezold Effect: Outlines matter

• color constancy: simultaneous contrast effect
Color/Lightness constancy: Illumination conditions

Image courtesy of John McCann
Color/Lightness constancy: Illumination conditions

Do they match?

Image courtesy of John McCann
Categorical color: limited number of discriminable bins

- human perception built on relative comparisons
 - great if color contiguous
 - surprisingly bad for absolute comparisons

- noncontiguous small regions of color
 - fewer bins than you want
 - rule of thumb: 6-12 bins, including background and highlights

- alternatives? this afternoon!

[Cinteny: flexible analysis and visualization of synteny and genome rearrangements in multiple organisms. Sinha and Meller. BMC Bioinformatics, 8:82, 2007.]
ColorBrewer

- http://www.colorbrewer2.org
- saturation and area example: size affects salience!
Ordered color: Rainbow is poor default

• problems
 – perceptually unordered
 – perceptually nonlinear

• benefits
 – fine-grained structure visible and nameable

Ordered color: Rainbow is poor default

• problems
 – perceptually unordered
 – perceptually nonlinear

• benefits
 – fine-grained structure visible
 and nameable

• alternatives
 – large-scale structure: fewer
 hues

Ordered color: Rainbow is poor default

• problems
 – perceptually unordered
 – perceptually nonlinear

• benefits
 – fine-grained structure visible and nameable

• alternatives
 – large-scale structure: fewer hues
 – fine structure: multiple hues with monotonically increasing luminance [eg viridis R/python]
Viridis

- colorful, perceptually uniform, colorblind-safe, monotonically increasing luminance

https://cran.r-project.org/web/packages/viridis/vignettes/intro-to-viridis.html
Ordered color: Rainbow is poor default

- **problems**
 - perceptually unordered
 - perceptually nonlinear
- **benefits**
 - fine-grained structure visible and nameable
- **alternatives**
 - large-scale structure: fewer hues
 - fine structure: multiple hues with monotonically increasing luminance [eg viridis R/python]
 - segmented rainbows for binned or categorical

Colormaps

- Categorical
- Ordered
 - Sequential
 - Diverging

Binary

Categorical

Diverging

Sequential

Colormaps

- Categorical
- Ordered
 - Sequential
- Diverging
- Bivariate

Colormaps

- Categorical
- Ordered
 - Sequential
 - Diverging
- Bivariate

use with care!

Colormaps

- Categorical
- Ordered
 - Sequential
 - Diverging
- Bivariate

- color channel interactions
 - size heavily affects salience
 - small regions need high saturation
 - large need low saturation
 - saturation & luminance: 3-4 bins max
 - also not separable from transparency

Map other channels

• size
 – length accurate, 2D area ok, 3D volume poor
• angle
 – nonlinear accuracy
 • horizontal, vertical, exact diagonal
• shape
 – complex combination of lower-level primitives
 – many bins
• motion
 – highly separable against static
 • binary: great for highlighting
 – use with care to avoid irritation

➔ Size, Angle, Curvature, ...
 ➔ Length
 ➔ Angle
 ➔ Area
 ➔ Curvature
 ➔ Volume

➔ Shape

➔ Motion
 ➔ Motion
 Direction, Rate, Frequency, ...
Angle

Sequential ordered line mark or arrow glyph

Diverging ordered arrow glyph

Cyclic ordered arrow glyph
Further reading

• Visualization Analysis and Design. Munzner. AK Peters Visualization Series, CRC Press, 2014
 – Chap 10: Map Color and Other Channels

• ColorBrewer, Brewer.
 – http://www.colorbrewer2.org

 – http://www.stonesc.com/Vis06

• https://cran.r-project.org/web/packages/viridis/vignettes/intro-to-viridis.html
Outline

• **Session 1 8:30-10:10am**
 Visualization Analysis Framework
 – Introduction: Definitions
 – Analysis: What, Why, How
 – Marks and Channels

• **Session 2 10:30am-12:10pm**
 Spatial Layout
 – Arrange Tables
 – Arrange Spatial Data
 – Arrange Networks and Trees

• **Session 3 2:00-3:40pm**
 Color & Interaction
 – Map Color
 – **Manipulate**: Change, Select, Navigate
 – **Facet**: Juxtapose, Partition, Superimpose

• **Session 4 4:15-5:55pm**
 Guidelines & Methods
 – **Reduce**: Filter, Aggregate
 – Rules of Thumb
 – Design Study Methodology

http://www.cs.ubc.ca/~tmm/talks.html#vad17fullday
@tamaramunzner
How?

Encode

- Arrange
 - Express
 - Separate
- Order
 - Align
- Use

Map from categorical and ordered attributes

- Color
 - Hue
 - Saturation
 - Luminance

- Size, Angle, Curvature, ...

- Shape
 - + ● ■ △

- Motion
 - Direction, Rate, Frequency, ...

Manipulate

- Change

Facet

- Juxtapose

Reduce

- Filter

- Aggregate

- Embed

What?

Why?

How?
How to handle complexity: 1 previous strategy + 3 more

- **Derive**
 - Derive new data to show within view
 - Change view over time
 - Facet across multiple views
 - Reduce items/attributes within single view

Manipulate
- Change

Facet
- Juxtapose

Reduce
- Filter
- Partition
- Aggregate
- Embed
Manipulate

- Change over Time
- Navigate
- Item Reduction
 - Zoom
 - Geometric or Semantic
 - Pan/Translate
 - Constrained
- Attribute Reduction
 - Slice
 - Cut
 - Project

Select
Change over time

- change any of the other choices
 - encoding itself
 - parameters
 - arrange: rearrange, reorder
 - aggregation level, what is filtered...
 - interaction entails change
Idiom: Re-encode
System: Tableau

made using Tableau, http://tableausoftware.com
Idiom: **Realign**

- stacked bars
 - easy to compare
 - first segment
 - total bar
- align to different segment
 - supports flexible comparison

System: **LineUp**

Idiom: Animated transitions

• smooth interpolation from one state to another
 – alternative to jump cuts, supports item tracking
 – best case for animation
 – staging to reduce cognitive load

• example: animated transitions in statistical data graphics

video: vimeo.com/19278444

Idiom: Animated transitions - visual encoding change

- smooth transition from one state to another
 - alternative to jump cuts, supports item tracking
 - best case for animation
 - staging to reduce cognitive load

[Stacked to Grouped Bars](http://bl.ocks.org/mbostock/3943967)
Idiom: Animated transition - tree detail

- animated transition
 - network drilldown/rollup

[Collapsible Tree](https://bl.ocks.org/mbostock/4339083)
Idiom: **Animated transition - bar detail**

- example: hierarchical bar chart
 - add detail during transition to new level of detail

[Hierarchical Bar Chart](https://bl.ocks.org/mbostock/1283663)
Navigate: Changing item visibility

• change viewpoint
 – changes which items are visible within view
 – camera metaphor
 • zoom
 – geometric zoom: familiar semantics
 – semantic zoom: adapt object representation based on available pixels
 » dramatic change, or more subtle one
 • pan/translate
 • rotate
 – especially in 3D
 – constrained navigation
 • often with animated transitions
 • often based on selection set

→ Navigate
→ Item Reduction
→ Zoom
 Geometric or Semantic
→ Pan/Translate
→ Constrained
Idiom: Semantic zooming

- visual encoding change
 - colored box
 - sparkline
 - simple line chart
 - full chart: axes and tickmarks

System: LiveRAC

Navigate: Reducing attributes

• continuation of camera metaphor
 – slice
 • show only items matching specific value for given attribute: slicing plane
 • axis aligned, or arbitrary alignment
 – cut
 • show only items on far side of plane from camera
 – project
 • change mathematics of image creation
 – orthographic
 – perspective
 – many others: Mercator, cabinet, ...

Further reading

 —Chap 11: Manipulate View

Outline

• **Session 1 8:30-10:10am**
 Visualization Analysis Framework
 – Introduction: Definitions
 – Analysis: What, Why, How
 – Marks and Channels

• **Session 2 10:30am-12:10pm**
 Spatial Layout
 – Arrange Tables
 – Arrange Spatial Data
 – Arrange Networks and Trees

• **Session 3 2:00-3:40pm**
 Color & Interaction
 – Map Color
 – Manipulate: Change, Select, Navigate
 – Facet: Juxtapose, Partition, Superimpose

• **Session 4 4:15-5:55pm**
 Guidelines & Methods
 – Reduce: Filter, Aggregate
 – Rules of Thumb
 – Design Study Methodology

http://www.cs.ubc.ca/~tmm/talks.html#vad17fullday @tamaramunzner
Facet

- **Juxtapose**

- **Partition**

- **Superimpose**
Juxtapose and coordinate views

- Share Encoding: Same/Different
 - Linked Highlighting

- Share Data: All/Subset/None

- Share Navigation
Idiom: **Linked highlighting**

- see how regions contiguous in one view are distributed within another
 - powerful and pervasive interaction idiom

- encoding: different
 - *multiform*

- data: all shared

Idiom: **cross filtering**

- item filtering
- coordinated views/controls combined
 - all scented histogram bisliders update when any ranges change

[http://square.github.io/crossfilter/]
Idiom: **bird’s-eye maps**

- encoding: same
- data: subset shared
- navigation: shared
 – bidirectional linking

- differences
 – viewpoint
 – (size)

- overview-detail

System: **Google Maps**

Idiom: Small multiples

- encoding: same
- data: none shared
 - different attributes for node colors
 - (same network layout)
- navigation: shared

System: Cerebral

Coordinate views: Design choice interaction

<table>
<thead>
<tr>
<th>Encoding</th>
<th>Data</th>
<th>Subviews</th>
</tr>
</thead>
<tbody>
<tr>
<td>Same</td>
<td>Redundant</td>
<td>Overview/Detail</td>
</tr>
<tr>
<td>Different</td>
<td>Multiform</td>
<td>Multiform, Overview/Detail</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Small Multiples</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No Linkage</td>
</tr>
</tbody>
</table>

- why juxtapose views?
 - benefits: eyes vs memory
 - lower cognitive load to move eyes between 2 views than remembering previous state with single changing view
 - costs: display area, 2 views side by side each have only half the area of one view
Why not animation?

• disparate frames and regions: comparison difficult
 – vs contiguous frames
 – vs small region
 – vs coherent motion of group

• safe special case
 – animated transitions
System: **Improvise**

- investigate power of multiple views
 - pushing limits on view count, interaction complexity
 - how many is ok?
 - open research question
- reorderable lists
 - easy lookup
 - useful when linked to other encodings

Partition into views

• how to divide data between views
 – split into regions by attributes
 – encodes association between items using spatial proximity
 – order of splits has major implications for what patterns are visible

• no strict dividing line
 – view: big/detailed
 • contiguous region in which visually encoded data is shown on the display
 – glyph: small/iconic
 • object with internal structure that arises from multiple marks
Partitioning: List alignment

• single bar chart with grouped bars
 – split by state into regions
 • complex glyph within each region showing all ages
 – compare: easy within state, hard across ages

• small-multiple bar charts
 – split by age into regions
 • one chart per region
 – compare: easy within age, harder across states

![Bar chart examples](image-url)
Partitioning: Recursive subdivision

- split by neighborhood
- then by type
- then time
 - years as rows
 - months as columns
- color by price

- neighborhood patterns
 - where it’s expensive
 - where you pay much more for detached type

Partitioning: Recursive subdivision

• switch order of splits
 – type then neighborhood

• switch color
 – by price variation

• type patterns
 – within specific type, which neighborhoods inconsistent

Partitioning: Recursive subdivision

• different encoding for second-level regions
 – choropleth maps

System: HIVE

Partitioning: Recursive subdivision

• size regions by sale counts
 – not uniformly
• result: treemap

Superimpose layers

• **layer**: set of objects spread out over region
 – each set is visually distinguishable group
 – extent: whole view

• **design choices**
 – how many layers, how to distinguish?
 • encode with different, nonoverlapping channels
 • two layers achievable, three with careful design
 – small static set, or dynamic from many possible?
Static visual layering

• foreground layer: roads
 – hue, size distinguishing main from minor
 – high luminance contrast from background

• background layer: regions
 – desaturated colors for water, parks, land areas

• user can selectively focus attention

• “get it right in black and white”
 – check luminance contrast with greyscale view

Superimposing limits

• few layers, but many lines
 – up to a few dozen
 – but not hundreds

• superimpose vs juxtapose: empirical study
 – superimposed for local, multiple for global
 – tasks
 • local: maximum, global: slope, discrimination
 – same screen space for all multiples vs single superimposed

Idiom: **Trellis plots**

- superimpose within same frame
 - color code by year

- partitioning
 - split by site, rows are wheat varieties

- main-effects ordering
 - derive value of median for group, use to order
 - order rows within view by variety median
 - order views themselves by site median
Dynamic visual layering

- interactive based on selection
- one-hop neighbour highlighting demos: click vs hover (lightweight)

Further reading

 - Chap 12: Facet Into Multiple Views

Outline

- **Session 1 8:30-10:10am**
 Visualization Analysis Framework
 - Introduction: Definitions
 - Analysis: What, Why, How
 - Marks and Channels

- **Session 2 10:30am-12:10pm**
 Spatial Layout
 - Arrange Tables
 - Arrange Spatial Data
 - Arrange Networks and Trees

- **Session 3 2:00-3:40pm**
 Color & Interaction
 - Map Color
 - Manipulate: Change, Select, Navigate
 - Facet: Juxtapose, Partition, Superimpose

- **Session 4 4:15-5:55pm**
 Guidelines & Methods
 - Reduce: Filter, Aggregate
 - Rules of Thumb
 - Design Study Methodology

http://www.cs.ubc.ca/~tmm/talks.html#vad17fullday

@tamaramunzner
Reduce items and attributes

- reduce/increase: inverses
- filter
 - pro: straightforward and intuitive
 - to understand and compute
 - con: out of sight, out of mind
- aggregation
 - pro: inform about whole set
 - con: difficult to avoid losing signal
- not mutually exclusive
 - combine filter, aggregate
 - combine reduce, change, facet
Idiom: **dynamic filtering**

- item filtering
- browse through tightly coupled interaction
 - alternative to queries that might return far too many or too few

Idiom: **histogram**

- static item aggregation
- task: find distribution
- data: table
- derived data
 - new table: keys are bins, values are counts
- bin size crucial
 - pattern can change dramatically depending on discretization
 - opportunity for interaction: control bin size on the fly
Idiom: scented widgets

- augmented widgets show information scent
 - cues to show whether value in drilling down further vs looking elsewhere
- concise use of space: histogram on slider

Scented histogram bisliders: detailed

Continuous scatterplot

- static item aggregation
- data: table
- derived data: table
 - key attrs x,y for pixels
 - quant attr: overplot density
- dense space-filling 2D matrix
- color: sequential categorical hue + ordered luminance colormap

Spatial aggregation

• MAUP: Modifiable Areal Unit Problem
 – gerrymandering (manipulating voting district boundaries) is only one example!
 – zone effects

[http://www.e-education.psu.edu/geog486/l4_p7.html, Fig 4.cg.6]

– scale effects

Idiom: **boxplot**

- static item aggregation
- task: find distribution
- data: table
- derived data
 - 5 quant attrs
 - median: central line
 - lower and upper quartile: boxes
 - lower upper fences: whiskers
 - values beyond which items are outliers
 - outliers beyond fence cutoffs explicitly shown

[40 years of boxplots. Wickham and Stryjewski. 2012. had.co.nz]
Idiom: **Hierarchical parallel coordinates**

- dynamic item aggregation
- derived data: *hierarchical clustering*
- encoding:
 - cluster band with variable transparency, line at mean, width by min/max values
 - color by proximity in hierarchy

Dimensionality reduction

- attribute aggregation
 - derive low-dimensional target space from high-dimensional measured space
 - use when you can’t directly measure what you care about
 - true dimensionality of dataset conjectured to be smaller than dimensionality of measurements
 - latent factors, hidden variables

Tumor Measurement Data

data: 9D measured space

\[\rightarrow \text{DR} \rightarrow \]

derived data: 2D target space
Idiom: Dimensionality reduction for documents

Task 1

In HD data ➔ Out 2D data

What?

In High-dimensional data ➔ Out 2D data

Why?

Produce ➔ Derive

Task 2

In 2D data ➔ Out Scatterplot Clusters & points

What?

In 2D data ➔ Out Scatterplot

Why?

Discover ➔ Explore

How?

Encode ➔ Navigate

Identify ➔ Select

Task 3

In Scatterplot Clusters & points ➔ Out Labels for clusters

What?

In Scatterplot Clusters & points ➔ Out Labels for clusters

Why?

Produce ➔ Annotate

Note: womb at
Further reading

 –Chap 13: Reduce Items and Attributes

Outline

• **Session 1 8:30-10:10am**
 Visualization Analysis Framework
 – Introduction: Definitions
 – Analysis: What, Why, How
 – Marks and Channels

• **Session 2 10:30am-12:10pm**
 Spatial Layout
 – Arrange Tables
 – Arrange Spatial Data
 – Arrange Networks and Trees

• **Session 3 2:00-3:40pm**
 Color & Interaction
 – Map Color
 – Manipulate: Change, Select, Navigate
 – Facet: Juxtapose, Partition, Superimpose

• **Session 4 4:15-5:55pm**
 Guidelines & Methods
 – Reduce: Filter, Aggregate
 – Rules of Thumb
 – Design Study Methodology

http://www.cs.ubc.ca/~tmm/talks.html#vad17fullday
@tamaramunzner
Rules of Thumb

• No unjustified 3D
 – Power of the plane
 – Disparity of depth
 – Occlusion hides information
 – Perspective distortion dangers
 – Tilted text isn’t legible

• No unjustified 2D

• Eyes beat memory

• Resolution over immersion

• Overview first, zoom and filter, details on demand

• Responsiveness is required

• Function first, form next
Unjustified 3D all too common, in the news and elsewhere

http://viz.wtf/post/137826497077/eye-popping-3d-triangles

http://viz.wtf/post/139002022202/designer-drugs-h3-ducqn
Depth vs power of the plane

- high-ranked spatial position channels: **planar** spatial position
 - not depth!

Steven’s Psychophysical Power Law: $S = I^N$

Magnitude Channels: Ordered Attributes
- Position on common scale
- Position on unaligned scale
- Length (1D size)
- Tilt/angle
- Area (2D size)
- Depth (3D position)
No unjustified 3D: Power of the plane

• high-ranked spatial position channels: **planar** spatial position – not depth!

Magnitude Channels: Ordered Attributes

- Position on common scale
- Position on unaligned scale
- Length (1D size)
- Tilt/angle
- Area (2D size)
- Depth (3D position)

Steven’s Psychophysical Power Law: $S = I^N$
No unjustified 3D: Danger of depth

• we don’t really live in 3D: we see in 2.05D
 – acquire more info on image plane quickly from eye movements
 – acquire more info for depth slower, from head/body motion

We can only see the outside shell of the world
Occlusion hides information

- occlusion
- interaction can resolve, but at cost of time and cognitive load

Perspective distortion loses information

- perspective distortion
 - interferes with all size channel encodings
 - power of the plane is lost!

[Visualizing the Results of Multimedia Web Search Engines. Mukherjea, Hirata, and Hara. InfoVis 96]
3D vs 2D bar charts

- 3D bars very difficult to justify!
 - perspective distortion
 - occlusion
- faceting into 2D almost always better choice
Tilted text isn’t legible

- text legibility
 - far worse when tilted from image plane

• further reading

No unjustified 3D example: Time-series data

- extruded curves: detailed comparisons impossible

[Cluster and Calendar based Visualization of Time Series Data. van Wijk and van Selow, Proc. InfoVis 99.]
No unjustified 3D example: Transform for new data abstraction

- derived data: cluster hierarchy
- juxtapose multiple views: calendar, superimposed 2D curves

[Cluster and Calendar based Visualization of Time Series Data. van Wijk and van Selow, Proc. InfoVis 99.]
Justified 3D: shape perception

- benefits outweigh costs when task is shape perception for 3D spatial data
 - interactive navigation supports synthesis across many viewpoints

Justified 3D: Economic growth curve

• constrained navigation steps through carefully designed viewpoints

No unjustified 3D

- 3D legitimate for true 3D spatial data
- 3D needs very careful justification **for abstract data**
 - enthusiasm in 1990s, but now skepticism
 - be especially careful with 3D for point clouds or networks

No unjustified 2D

• consider whether network data requires 2D spatial layout
 – especially if reading text is central to task!
 – arranging as network means lower information density and harder label lookup compared to text lists

• benefits outweigh costs when topological structure/context important for task
 – be especially careful for search results, document collections, ontologies
Eyes beat memory

- principle: external cognition vs. internal memory
 - easy to compare by moving eyes between side-by-side views
 - harder to compare visible item to memory of what you saw

- implications for animation
 - great for choreographed storytelling
 - great for transitions between two states
 - poor for many states with changes everywhere
 - consider small multiples instead

- literal
- abstract
- animation
- small multiples
- show time with time
- show time with space
Eyes beat memory example: Cerebral

• small multiples: one graph instance per experimental condition
 – same spatial layout
 – color differently, by condition

Why not animation?

• disparate frames and regions: comparison difficult
 – vs contiguous frames
 – vs small region
 – vs coherent motion of group

• safe special case
 – animated transitions
Resolution beats immersion

• immersion typically not helpful for abstract data
 – do not need sense of presence or stereoscopic 3D
 – desktop also better for workflow integration

• resolution much more important: pixels are the scarcest resource

• virtual reality for abstract data difficult to justify thus far
 • but stay tuned with second wave

Overview first, zoom and filter, details on demand

• influential mantra from Shneiderman

• overview = summary
 – microcosm of full vis design problem
Responsiveness is required

• three major categories
 – 0.1 seconds: perceptual processing
 – 1 second: immediate response
 – 10 seconds: brief tasks

• importance of visual feedback
Function first, form next

• start with focus on functionality
 – possible to improve aesthetics later on, as refinement
 – if no expertise in-house, find good graphic designer to work with
 – aesthetics do matter: another level of function
 – visual hierarchy, alignment, flow
 – Gestalt principles in action

• dangerous to start with aesthetics
 – usually impossible to add function retroactively

Further reading

 – *Chap 6: Rules of Thumb*

 – *Chap 12: We Have Time Requirements*

Outline

- **Session 1 8:30-10:10am**
 Visualization Analysis Framework
 - Introduction: Definitions
 - Analysis: What, Why, How
 - Marks and Channels

- **Session 2 10:30am-12:10pm**
 Spatial Layout
 - Arrange Tables
 - Arrange Spatial Data
 - Arrange Networks and Trees

- **Session 3 2:00-3:40pm**
 Color & Interaction
 - Map Color
 - Manipulate: Change, Select, Navigate
 - Facet: Juxtapose, Partition, Superimpose

- **Session 4 4:15-5:55pm**
 Guidelines & Methods
 - Reduce: Filter, Aggregate
 - Rules of Thumb
 - Design Study Methodology

http://www.cs.ubc.ca/~tmm/talks.html#vad17fullday @tamaramunzner
Design Study Methodology

Reflections from the Trenches and from the Stacks

http://www.cs.ubc.ca/labs/imager/tr/2012/dsm/
Methodology for problem-driven work

- definitions

- 9-stage framework

- 32 pitfalls & how to avoid them

- comparison to related methodologies
Lessons learned from the trenches: 21 between us

Cerebral genomics
MizBee genomics
Pathline genomics
MulteeSum genomics
Vismon fisheries management
QuestVis sustainability
WiKeVis in-car networks
MostVis in-car networks
Car-X-Ray in-car networks
ProgSpy2010 in-car networks
RelEx in-car networks
Cardiogram in-car networks
AutobahnVis in-car networks
VisTra in-car networks
Constellation linguistics
LibVis cultural heritage
Caidants multicast
SessionViewer web log analysis
LiveRAC server hosting
PowerSetViewer data mining
LastHistory music listening
Design study methodology: definitions
9 stage framework
9-stage framework

PRECONDITION

CORE

ANALYSIS

learn

winnow

cast

discover → design → implement → deploy → reflect → write
9-stage framework

PRECONDITION

CORE

ANALYSIS

discover

design

implement

deploy
9-stage framework

• guidelines: confirm, refine, reject, propose
9-stage framework

PRECONDITION

CORE

ANALYSIS

learn → winnow → cast → discover → design → implement → deploy → reflect → write

iterative
Design study methodology: 32 pitfalls

• and how to avoid them

<table>
<thead>
<tr>
<th>PF-1</th>
<th>premature advance: jumping forward over stages</th>
<th>general</th>
</tr>
</thead>
<tbody>
<tr>
<td>PF-2</td>
<td>premature start: insufficient knowledge of vis literature</td>
<td>learn</td>
</tr>
<tr>
<td>PF-3</td>
<td>premature commitment: collaboration with wrong people</td>
<td>winnow</td>
</tr>
<tr>
<td>PF-4</td>
<td>no real data available (yet)</td>
<td>winnow</td>
</tr>
<tr>
<td>PF-5</td>
<td>insufficient time available from potential collaborators</td>
<td>winnow</td>
</tr>
<tr>
<td>PF-6</td>
<td>no need for visualization: problem can be automated</td>
<td>winnow</td>
</tr>
<tr>
<td>PF-7</td>
<td>researcher expertise does not match domain problem</td>
<td>winnow</td>
</tr>
<tr>
<td>PF-8</td>
<td>no need for research: engineering vs. research project</td>
<td>winnow</td>
</tr>
<tr>
<td>PF-9</td>
<td>no need for change: existing tools are good enough</td>
<td>winnow</td>
</tr>
</tbody>
</table>
I’m a domain expert! Wanna collaborate?

Of course!!!
considerations

Have data?
Have time?
Have need?

Interesting problem?

...
Are you a user???

... or maybe a fellow tool builder?
Metaphor
Winnowing
Collaborator winnowing

initial conversation

(potential collaborators)
Collaborator winnowing

initial conversation

further meetings
Collaborator winnowing

- initial conversation
- further meetings
- prototyping
Collaborator winnowing

- initial conversation
- further meetings
- prototyping
- full collaboration
Collaborator winnowing

Talk with many, stay with few!
EXAMPLE FROM THE TRENCHES

Premature Collaboration!

PowerSet Viewer
2 years / 4 researchers

WikeVis
0.5 years / 2 researchers
EXAMPLE FROM THE TRENCHES

Premature Collaboration!

PowerSet Viewer
2 years / 4 researchers

WikeVis
0.5 years / 2 researchers

- Fellow tool builders
- Data promised
Design study methodology: 32 pitfalls

<table>
<thead>
<tr>
<th>PF-10</th>
<th>no real/important/recurring task</th>
<th>winnow</th>
</tr>
</thead>
<tbody>
<tr>
<td>PF-11</td>
<td>no rapport with collaborators</td>
<td>winnow</td>
</tr>
<tr>
<td>PF-12</td>
<td>not identifying front line analyst and gatekeeper before start</td>
<td>cast</td>
</tr>
<tr>
<td>PF-13</td>
<td>assuming every project will have the same role distribution</td>
<td>cast</td>
</tr>
<tr>
<td>PF-14</td>
<td>mistaking fellow tool builders for real end users</td>
<td>cast</td>
</tr>
<tr>
<td>PF-15</td>
<td>ignoring practices that currently work well</td>
<td>discover</td>
</tr>
<tr>
<td>PF-16</td>
<td>expecting just talking or fly on wall to work</td>
<td>discover</td>
</tr>
<tr>
<td>PF-17</td>
<td>experts focusing on visualization design vs. domain problem</td>
<td>discover</td>
</tr>
<tr>
<td>PF-18</td>
<td>learning their problems/language: too little / too much</td>
<td>discover</td>
</tr>
<tr>
<td>PF-19</td>
<td>abstraction: too little</td>
<td>design</td>
</tr>
<tr>
<td>PF-20</td>
<td>premature design commitment: consideration space too small</td>
<td>design</td>
</tr>
</tbody>
</table>
Of course they need the cool **technique** I built last year!
METAPHOR

Design Space

+ good
○ okay
- poor
Metaphor

Design Space

Your technique...
METAPHOR

Design Space

know
METAPHOR
Design Space

know
consider
METAPHOR

Design Space

know
consider
propose
METAPHOR

Design Space

know
consider
propose
select
Think broad!
Design study methodology: 32 pitfalls

<table>
<thead>
<tr>
<th>PF-21</th>
<th>mistaking technique-driven for problem-driven work</th>
<th>design</th>
</tr>
</thead>
<tbody>
<tr>
<td>PF-22</td>
<td>nonrapid prototyping</td>
<td>implement</td>
</tr>
<tr>
<td>PF-23</td>
<td>usability: too little / too much</td>
<td>implement</td>
</tr>
<tr>
<td>PF-24</td>
<td>premature end: insufficient deploy time built into schedule</td>
<td>deploy</td>
</tr>
<tr>
<td>PF-25</td>
<td>usage study not case study: non-real task/data/user</td>
<td>deploy</td>
</tr>
<tr>
<td>PF-26</td>
<td>liking necessary but not sufficient for validation</td>
<td>deploy</td>
</tr>
<tr>
<td>PF-27</td>
<td>failing to improve guidelines: confirm, refine, reject, propose</td>
<td>reflect</td>
</tr>
<tr>
<td>PF-28</td>
<td>insufficient writing time built into schedule</td>
<td>write</td>
</tr>
<tr>
<td>PF-29</td>
<td>no technique contribution ≠ good design study</td>
<td>write</td>
</tr>
<tr>
<td>PF-30</td>
<td>too much domain background in paper</td>
<td>write</td>
</tr>
<tr>
<td>PF-31</td>
<td>story told chronologically vs. focus on final results</td>
<td>write</td>
</tr>
<tr>
<td>PF-32</td>
<td>premature end: win race vs. practice music for debut</td>
<td>write</td>
</tr>
</tbody>
</table>
I can write a design study paper in a week!

“writing is research”

[Wolcott: Writing up qualitative research, 2009]
Metaphor

Horse Race vs. Music Debut

Must be first!

Am I ready?

technique-driven

problem-driven

http://www.alaineknipes.com/interests/violin_concert.jpg

EXAMPLE FROM THE TRENCHES

Don’t step on your own toes!

First design round published

Subsequent work not stand-alone paper

AutobahnVis 1.0
[Sedlmair et al., Smart Graphics, 2009]

AutobahnVis 2.0
[Sedlmair et al., Information Visualization 10(3), 2011]
Reflections from the stacks: Wholesale adoption inappropriate

- **ethnography**
 - rapid, goal-directed fieldwork

- **grounded theory**
 - not empty slate: vis background is key

- **action research**
 - aligned
 - intervention as goal
 - transferability not reproducibility
 - personal involvement is key
 - opposition
 - translation of participant concepts into visualization language
 - researcher lead not facilitate design
 - orthogonal to vis concerns: participants as writers, adversarial to status quo, postmodernity
Outline

• **Session 1 8:30-10:10am**
 Visualization Analysis Framework
 – Introduction: Definitions
 – Analysis: What, Why, How
 – Marks and Channels

• **Session 2 10:30am-12:10pm**
 Spatial Layout
 – Arrange Tables
 – Arrange Spatial Data
 – Arrange Networks and Trees

• **Session 3 2:00-3:40pm**
 Color & Interaction
 – Map Color
 – Manipulate: Change, Select, Navigate
 – Facet: Juxtapose, Partition, Superimpose

• **Session 4 4:15-5:55pm**
 Guidelines & Methods
 – Reduce: Filter, Aggregate
 – Rules of Thumb
 – Design Study Methodology

http://www.cs.ubc.ca/~tmm/talks.html#vad17fullday
@tamaramunzner
More Information

- this talk
 http://www.cs.ubc.ca/~tmm/talks.html#vad17fullday

- book page (including tutorial lecture slides)
 http://www.cs.ubc.ca/~tmm/vadbook
 – 20% promo code for book+ebook combo: HVN17

 – illustrations: Eamonn Maguire

- papers, videos, software, talks, courses
 http://www.cs.ubc.ca/group/infovis
 http://www.cs.ubc.ca/~tmm

@tamaramunzner