Visualization Analysis & Design Full-Day Tutorial

Tamara Munzner
Department of Computer Science
University of British Columbia

Why use an external representation?

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

- external representation: replace cognition with perception
- human visual system is high-bandwidth channel to brain
- overview possible due to background processing
- subjective experiences of seeing everything simultaneously
- significant processing occurs in parallel and pre-attentively
- sound lower bandwidth and different semantics
- overview not supported
- subjective experiences of sequential stream
- touch/haptic impoverished record/replay capacity
- only very low-bandwidth communication thus far
- taste, smell, no viable record/replay devices

Why represent all the data?

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

- summaries lose information, details matter
- confirm expected and find unexpected patterns
- assess validity of statistical model
- Annesmo’s Quartet

Why is validation difficult?

Why depend on vision?

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

- human visual system is high-bandwidth channel to brain
- overview possible due to background processing
- subjective experiences of seeing everything simultaneously
- significant processing occurs in parallel and pre-attentively
- sound lower bandwidth and different semantics
- overview not supported
- subjective experiences of sequential stream
- touch/haptic impoverished record/replay capacity
- only very low-bandwidth communication thus far
- taste, smell, no viable record/replay devices

Why focus on tasks and effectiveness?

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

- effectiveness requires match between data/task and representation
- set of representations is huge
- many are ineffective mismatches for specific data/task combo
- faster speed up existing workflows
- how to validate effectiveness:
 - many methods, must pick appropriate one for your context

Why is validation difficult?

- solution: use methods from different fields at each level
- problem-driven work
- anthropological
- design
- computer science
- cognitive psychology
- anthropological

Further reading

- http://www.cs.ubc.ca/~tmm/talks.html#vad17fullday @tamaramunzner

Outline

- Session 1 8:30–10:10am
 - Visualization Analysis Framework
 - Introduction: Definitions
 - Analysis: What, Why, How
 - Marks and Channels
 - Arrage Tables
 - Arrange Spatial Data
 - Arrange Networks and Trees
- Session 2 10:30am–12:10pm
 - Spatial Layout
 - Guidelines & Methods
 - Reduce-Flex Aggregates
 - Rules of Thumb
 - Design Study Methodology
- Session 4 4:15–5:55pm
 - Map Color
 - Context with Guaranteed Visibility
 - Node Link Tree, Design Evolution and Empirical Evaluation.
 - Grosjean, Plaisant, and Bederson.
- http://www.cs.ubc.ca/~tmm/talks.html#vad17fullday @tamaramunzner

Why?

- dataset
- what
- attributes
- dataset types
- data types
- data and dataset types

Outline

- Session 1 8:30–10:10am
 - Visualization Analysis Framework
 - Introduction: Definitions
 - Analysis: What, Why, How
 - Marks and Channels
 - Arrage Tables
 - Arrange Spatial Data
 - Arrange Networks and Trees
- Session 2 10:30am–12:10pm
 - Spatial Layout
 - Guidelines & Methods
 - Reduce-Flex Aggregates
 - Rules of Thumb
 - Design Study Methodology
- Session 3 2:00–3:40pm
 - Map Color
 - Context with Guaranteed Visibility
 - Node Link Tree, Design Evolution and Empirical Evaluation.
 - Grosjean, Plaisant, and Bederson.
- http://www.cs.ubc.ca/~tmm/talks.html#vad17fullday @tamaramunzner

Vis designers must take into account three very different kinds of resource limitations:

- computational limits
 - processing time
 - system memory
- human limits
 - human attention and memory
- display limits
 - pixels are precious resource, the most constrained resource
 - information density: ratio of space used to encode info vs unused white space
 - tradeoff between clutter and wasting space, find sweet spot between dense and sparse

Why is validation difficult?

- different ways to get it wrong at each level

Why?

- domain situation
 - you misunderstand their needs
 - you’re showing them the wrong thing
- data/task abstraction
 - algorithm
 - how is it shown?
 - visual encoding idiom how to draw
 - interaction idiom how to manipulate
 - efficient computation

Computational limits: Four levels of visual design

- domain situation
 - who are the target users?
- abstraction
 - translate from specific domain to vocabulary of vis
 - what is shown? data abstraction
 - why is the user looking at it? task abstraction
 - idiom
 - how is it shown?
 - visual encoding idiom how to draw
 - interaction idiom how to manipulate
 - efficient computation

Computational limits: Four levels of visual design

- domain situation
 - who are the target users?
- abstraction
 - translate from specific domain to vocabulary of vis
 - what is shown? data abstraction
 - why is the user looking at it? task abstraction
 - idiom
 - how is it shown?
 - visual encoding idiom how to draw
 - interaction idiom how to manipulate
 - efficient computation

Computational limits: Four levels of visual design

- domain situation
 - who are the target users?
- abstraction
 - translate from specific domain to vocabulary of vis
 - what is shown? data abstraction
 - why is the user looking at it? task abstraction
 - idiom
 - how is it shown?
 - visual encoding idiom how to draw
 - interaction idiom how to manipulate
 - efficient computation

Visualization to validate when there is a need to augment human capabilities rather than replace people with computational decision-making methods.

- human in the loop needs the details & no trusted automatic solution exists
- doesn’t know exactly what questions to ask in advance
- exploratory data analysis
- present known results to others
- during algorithm creation to refine, debug, set parameters
- before or during deployment to build trust and monitor

Why is validation difficult?

- solution: use methods from different fields at each level
- problem-driven work
- anthropological
- design
- computer science
- cognitive psychology
- anthropological
Three major datatypes

1. Attribute
2. Table
3. Network

Dataset Types

- Tables
- Networks
- Fields
- Attributes
- Links
- Positions
- Grids

Attributes (columns)
- Item(s)
- Fields (continuous)
- Geometric primitives
- Geometry
- Categorical
- Sequential
- Dynamic

Items (nodes)
- Links
- Positions
- Grids

Three major datatypes

1. Attribute
2. Table
3. Network

Dataset Availability

- Static
- Dynamic

Data Types

- Items
- Attributes
- Links
- Positions
- Grids

Dataset and data types

- Attributes
- Values in cell
- Grid of positions
- Network

Why?

- Targets
- Analysis: Analyze
- Analysis: Search, query

Further reading

Visual encoding

- Marks
- Channels

Visual encoding

- Analyze: Analyze
- Analyze: Search, query

Outline

- Session 1: 8:30-10:10am
 - Introduction: Definitions
 - Analysis: Why, Why, How
 - Marks and Channels

- Session 2: 10:30am-12:10pm
 - Spatial Layout
 - Arranges Tables
 - Arranges Networks and Trees

- Session 3: 2:00-2:45pm
 - Color and Intensity
 - Map Color

- Session 4: 4:15-5:15pm
 - Guidelines & Methods
 - Design Study Methodology

http://www.dcs.gla.ac.uk/~wright/Field/725851
Channels: Matching Types

- **Magnitude Channels:** Ordinal Attributes
 - Position on common scale
 - Perceived magnitude
 - Length (1D size)
 - Area (2D position)
 - Depth (3D position)
 - Tilt (angle)
 - Orientation
 - Volume (3D shape)

- **Identity Channels:** Categorical Attributes
 - Color hue
 - Color saturation
 - Motion
 - Shape
 - Angle

Channels: Expressiveness types and effectiveness rankings

- **expressiveness principle**
 - match channel and data characteristics
 - encode most important attributes with highest ranked channels

Accuracy: Fundamental Theory

- **Stevens' Psychological Power Law**: $E = kI^n$

Popout

- find the red dot
 - how long does it take?

- parallel processing on many individual channels
 - speed independent of distractor count
 - speed depends on channel and amount of difference from distractors
 - serial search for (almost all) combinations
 - speed depends on number of distractors

Relative vs. absolute judgements

- perceptual system mostly operates with relative judgements, not absolute
 - that's why accuracy increases with common frame/scale and alignment

- Weber's Law: ratio of increment to background is constant
 - filed rectangles differ in length by 1:2, easy judgement

Further reading

- **Visualization Analysis and Design. Munzner. AK Peters Visualization Series, CRC Press, 2014.**
 - Chap. 1: Marks and Overview
 - Visual Thinking for Design. Ware, Morgan Kaufmann, 2008.

Outline

- Session 1: 8:30-10am
 - Visualization Analysis Framework
 - Introduction: Definitions
 - Analysis: What, Why, How
 - Marks and Channels

- Session 2: 10:30am-12:10pm
 - Spatial Layout
 - Arrange Tables
 - Arrange Spatial Data
 - Arrange Networks and Trees

- Session 3: 2:00-3:40pm
 - Color & Interaction
 - Color
 - Manipulate: Change, Select, Navigate
 - Palettes: Juxtapose, Pattern, Superimpose

- Session 4: 4:15-5:35pm
 - Guidelines & Methods
 - Reduce: Filter, Aggregate
 - Rules of Thumb
 - Design Study Methodology

Further reading 2014. Healey. http://www.csc.ncsu.edu/faculty/healey/PP

Popout

- find the red dot
 - how long does it take?

- parallel processing on many individual channels
 - speed independent of distractor count
 - speed depends on channel and amount of difference from distractors
 - serial search for (almost all) combinations
 - speed depends on number of distractors

Accuracy: Visual experiments

- must be sufficient for number of attribute levels to show
 - 2 groups each

Separability vs. Integrality

- fully separable
- some interference
- some/much interference
- major interference

- 2 groups each
- 3 groups total: integral area
- 4 groups total: integral area

Further reading

 - Chap. 1: Marks and Overview
 - Visual Thinking for Design. Ware, Morgan Kaufmann, 2008.

Outline

- Session 1: 8:30-10am
 - Visualization Analysis Framework
 - Introduction: Definitions
 - Analysis: What, Why, How
 - Marks and Channels

- Session 2: 10:30am-12:10pm
 - Spatial Layout
 - Arrange Tables
 - Arrange Spatial Data
 - Arrange Networks and Trees

- Session 3: 2:00-3:40pm
 - Color & Interaction
 - Color
 - Manipulate: Change, Select, Navigate
 - Palettes: Juxtapose, Pattern, Superimpose

- Session 4: 4:15-5:35pm
 - Guidelines & Methods
 - Reduce: Filter, Aggregate
 - Rules of Thumb
 - Design Study Methodology

Further reading 2014. Healey. http://www.csc.ncsu.edu/faculty/healey/PP
Idiom: **scatterplot**
- express values
 - quantitative attributes
 - no keys, only values
- data
 - 2 quant attribs
 - mark points
 - hand or vert position
 - task
 - trend, outliers, distribution, correlation, clusters
- scalability
 - hundreds of items

LIMITATION: Hard to make comparisons

[Slide courtesy of Ben Jones]

Idiom: line chart / dot plot
- one key, one value
- data
 - 2 quant attribs
 - mark points
 - line connection marks between them
- channel
 - aligned lengths to express quant value
 - separated and ordered by key attrib into horizontal regions
- task
 - Line trend
 - connection marks emphasize ordering of items along key axis by explicitly drawing relationship between one item and the next
- scalability
 - dozens to hundreds of levels for key attrib

LIMITATION: Hard to make comparisons

[Slide courtesy of Ben Jones]

Idiom: stacked bar chart
- one more key
- data
 - 2 quant attribs
 - mark: vertical stack of line marks
 - channel
 - length and color hue
 - spatial regions: one per giph
 - aligned horizontally, aligned vertically
 - ordered by quant attrib
 - by text (alphabetical) by length attrib (data-driven)
- task
 - compare, lookup values
- scalability
 - dozens to hundreds of levels for key attrib

LIMITATION: Hard to make comparisons

[Slide courtesy of Ben Jones]

Idiom: bar chart
- one key, one value
- data
 - 1 cat. giph, 1 quant giph
 - mark: bars
- channel
 - length to express quant value
 - spatial regions: one per mark
 - separated and ordered by quant attrib
 - hand or vert position
- task
 - compare, lookup values
- scalability
 - dozens to hundreds of levels for key attrib

LIMITATION: Hard to make comparisons

[Slide courtesy of Ben Jones]
Idioms: Gantt charts
- one key, two (related) values
 - data
 - 1 csgn str, 2-qant str, 3-mark, line
 - length, duration
 - channels
 - horiz position: start/ends time
 - horiz length: duration
 - task
 - emphasize temporal overlaps, start/ends dependencies between tasks
 - scalability
 - dozens of key levels
 - hundreds of value levels

Idioms: heatmaps
- two keys, one value
 - data
 - 2 csgn str, (gene, experimntal condition)
 - 1 qant str, (expression levels)
 - matrix, area
 - zoom-in and out in 3D matrix
 - influenced by 2caretorial attributes
 - channels
 - color by qant str
 - (categorical: hexagonal coloring)
 - find clusters, outliers
 - scalability
 - 19k rows, 100 g key levels, 10 qant str levels

Idioms: scatterplot matrix, parallel coordinates
- scatterplot matrix (SPLOM)
 - rectilinear axes, point mark
 - all possible pairs of axes
 - scalability
 - one dozen axes
 - dozens to hundreds of terms
 - parallel coordinates
 - parallel axes, jagged line representing item
 - rectilinear axes, item as point
 - axes ordering is major challenge
 - scalability
 - dozens of axes
 - hundreds of terms

Task: Correlation
- scatterplot matrix
 - positive correlation
 - diagonal low-to-high
 - negative correlation
 - diagonal high-to-low
 - uncorrelated
 - parallel coordinates
 - positive correlation
 - parallel line segments
 - negative correlation
 - all segments cross at target point
 - uncorrelated
 - scattered crossings

Idioms: radial bar chart, star plot
- radial bar chart
 - red-segments meet at central ring, line mark
 - star plot
 - radial axes, meet at central point, line mark
 - bar chart
 - rectilinear axes, aligned vertically
 - accuracy
 - length unaligned with radial
 - less accuracy than aligned with rectilinear

Idioms: pie chart, polar area chart
- pie chart
 - area marks with angle channel
 - accuracy: angle/area less accurate than line length
 - area chart
 - area marks with angle channel
 - more direct analog to bar charts
 - task
 - 1 csgn key str, 1 qant value attr

Idioms: glyphsmaps
- rectilinear good for linear vs nonlinear trends
- radial good for cyclic patterns

Orientation limitations
- rectilinear: scalability wrt #axes
 - 2 axes best
 - 3: problematic
 - more in afterward
 - 4: impossible
- parallel: unfamiliarity, training time
- radial: perceptual limits
 - angles lower precision than lengths
 - asymmetry between angle and length

- ..can be exploited!
 - (uncovering strengths and weaknesses of radial visualization in empirical settings)
 - (Wegman 1990, 664–675)
 - ..can be exploited!
 - (uncovering strengths and weaknesses of radial visualization in empirical settings)
 - (Shneiderman 2010, 3–28)

Further reading

Idioms: choropleth map
- use given spatial data
 - when central task is understanding spatial relationships
- data
 - geographic
 - map with 1 qant attribute per region
 - encoding
 - use given geometry for area mark boundaries
 - segmented colordom map (more later)
 - geographic heat map

Outline
- Session 1: 8:30–10:00
 - Visualization Analysis Framework
 - Introduction Definitions
 - Analysis: What, Why, How
 - Marks and Channels
- Session 2: 10:30–12:00
 - Spatial Layout
 - Arrange Tables
 - Arrange Spatial Data
 - Arrange Heatmaps and Trees
- Session 3: 2:00–3:45pm
 - Color & Interaction
 - Map Color
 - Manipulation: Change, Select, Navigate
 - Focus/Juxtapose, Portion, Superimpose
- Session 4: 4:15–5:55pm
 - Guidelines & Methods
 - Reduce clutter, Aggregates
 - Focus on Thubur
 - Design Study Methodology

Arrange spatial data
- Use Given
 - Geometry
 - Geographic
 - Spatial Fields
 - Scalar fields (one value per cell)
 - Vector fields
 - Direct field rendering
 - Vector and Surface Fields (grey values per cell)
 - Flow (edge-based)
 - Geographic (space seeds)
 - Temporal (change over time)
 - Features (globally derived)
 - Encoding
 - use given geometry for area mark boundaries
 - segmented color dom map (more later)
 - geographic heat map
Idiom: Bayesian surprise maps
- use models of expectations to highlight surprising values
- confounds (population and variance (sparsity)

Idioms: topographic map
- data
 - geographic geometry
 - scalar field
 - 1 attribute per grid cell
- derived data
 - isosurface
 - isosurfaces computed for specific levels of scalar values

Idioms: isosurfaces, direct volume rendering
- data
 - scalar field
 - 1 attribute per grid cell
- tasks
 - shape understanding, spatial relationships
- isosurfaces
 - derived data: isosurfaces computed for specific levels of scalar values
 - direct volume rendering: transfer function maps scalar values to color, opacity

Idiom: node-link best for small networks
- sparse set of seed points
- emphasizes topology, path tracing

Outline
- Session 1 8:30-10:10am
 - Visualization Analysis Framework
 - Introduction: Definitions
 - Analysis: What, Why, How
 - Marks and Channels
 - Spatial Layout
 - Diagrams
 - Arrangement
 - Assign
- Session 2 10:30-12:10pm
 - Guiltredude & Methods
 - Reduce: Filter Aggregates
 - Rules of Thumb
 - Design Study Methodology

Further reading
- A Quick-Start Spatial Data
Further reading

Outline
- Introduction: Definitions
- Session 1: 8:30-10 (keynote)
- Visualization Analysis Framework
 - Analysis: What, Why, How
 - Maps and Channels

- Session 2: 10:00am-12pm
 - Spatial Layout
 - Arranging Tables
 - Arranging Spatial Dots
 - Arranging Networks and Trees
- Session 3: 3:00pm-5:00pm
 - Guidelines and Methods
 - Reducing Time Aggregation
 - Rules of Thumb
 - Design Study Methodology

Spectral sensitivity

Opponent color and color deficiency
- perceptual processing before optic nerve
- one chromatic luminance channel L
- one achromatic luminance channel M
- colorblind if one axis has degraded acuity
- 8% of men are red/green color deficient
- blue/yellow is rare

Designing for color deficiency: Check with simulator
- redundant encode
- vary luminance
- change shape

Designing for color deficiency: Avoid encoding by hue alone
- color constancy: simultaneous contrast effect

Color/Lightness constancy: Illumination conditions
- Reduces color to 2 dimensions
- Luminance values
- Hue

Decomposing color
- first rule of color: do not talk about color!
- color is confusing if treated as monolithic
- decompose into three channels
- ordered can show magnitude
- categorical can show identity
- channels have different properties

Luminance
- need luminance for edge detection
- fine-grained detail only visible through luminance contrast
- legible text requires luminance contrast!
- intrinsic perceptual ordering

Spectral sensitivity
- IRUV
- Visible Spectrum

Opponent color and color deficiency
- colorblind if one axis has degraded acuity
- 8% of men are red/green color deficient
- blue/yellow is rare

Designing for color deficiency: Reduces color to 2 dimensions
- Bezold Effect: Outlines matter
- color constancy: simultaneous contrast effect

Color/Lightness constancy: Illumination conditions
- Image courtesy of John McCain

Idiom design choices: Encode
- Map
- Color
- Motion
- Size, Angle, Curvature, ...
- Hue
- Saturation
- Luminance
- Shape
- Direction, Rate, Frequency, ...
- from categorical and ordered attributes
- Color
- Saturation
- Luminance values
- Hue

Categorical vs ordered color
- Categorical and ordered attributes

Tree drawing idioms comparison
- Idiom design choices: Encode
- Color deficiency:
 - Categorical vs ordered color
 - Color/Lightness constancy: Illumination conditions
 - Bezold Effect: Outlines matter
 - color constancy: simultaneous contrast effect

Further reading
- Color deficiency: Reduces color to 2 dimensions
- Further reading
- Color/Lightness constancy: Illumination conditions
- Image courtesy of John McCain

Opponent color and color deficiency
- perceptual processing before optic nerve
- one chromatic luminance channel L
- one achromatic luminance channel M
- two chroma channels, R - G and Y - B axis
- colorblind if one axis has degraded acuity
- 8% of men are red/green color deficient
- blue/yellow is rare

Color/Lightness constancy: Illumination conditions
- Image courtesy of John McCain

Designing for color deficiency: Blue-Orange is safe
- Image courtesy of John McCain

Designing for color deficiency: Check with simulator
- redundant encode
- vary luminance
- change shape

Designing for color deficiency: Avoid encoding by hue alone
- color constancy: simultaneous contrast effect

Color/Lightness constancy: Illumination conditions
- Image courtesy of John McCain
Binary Diverging Categorical Sequential Categorical

- Human perception built on relative comparisons
 - Great for color contiguous
 - Surprisingly bad for absolute comparisons
- Noncontiguous small regions of color
 - Fewer bins than you want
 - Rule of thumb: 6-12 bins, excluding background and highlights
 - Alternatives: this afternoon!

Ordered color: Binary
- Problems
 - Perceptually unordered
 - Perceptually non-linear
- Benefits
 - Fine-grained structure visible and removable
- Alternatives
 - Large-scale structure fewer hues

Rainbow Colormaps
- Problems
 - Perceptually unordered
 - Perceptually non-linear
- Benefits
 - Fine-grained structure visible and removable
- Alternatives
 - Large-scale structure fewer hues

Clotho and Eris:
- Human perception built on relative comparisons
 - Great for color contiguous
 - Surprisingly bad for absolute comparisons
- Noncontiguous small regions of color
 - Fewer bins than you want
 - Rule of thumb: 6-12 bins, excluding background and highlights
- Alternatives: this afternoon!

ColorBrewer
- http://www.colorbrewer2.org

Visualization Analysis Framework
- Color channel interactions
 - Size heavily affects salience
 - Small regions need high saturation
 - Large need low saturation
 - Intensities & luminance: 3-4 bars max
 - Also not separable from transparency

Further reading
- Visualization Analysis and Design, Munzner. AK Peters Visualization Series, CRC Press, 2014
- [Chap 1.8 Map Color and Other Channels](http://www.colorbrewer2.org)
- ColorBrewer: Brewer.
- http://www.personal.psu.edu/faculty/c/a/cab38/ColorSch/Schemes.html

Outline
- Session 1: 8:30-10:00am Visualization Analysis Framework
 - Introduction Definitions
 - Analysis: Why, Why Now
 - Marks and Channels
 - Spatial Layout
 - Arrange Table
 - Arrange Spatial Dots
 - Arrange Networks and Trees

- Session 3: 2:00-3:40pm Color & Interaction
 - Map Color
 - Manipulation: Change, Select, Navigate
 - Focus, Juxtapose, Compare, Superimpose
 - Session 4: 4:15-5:15pm Guidelines & Methods
 - Reduce, Filter, Aggregates
 - Rules of Thumb
 - Design Study Methodology

Map other channels
- Size, Angle, Curvature, ...
- Length
- Angle
- Nonlinear accuracy
- Horizontal, vertical, exact diagonal
- Shape
 - Complex combination of lower-level primitives
 - Many bars
 - Motion
 - Highly separable against static; binary gray for highlighting
 - Use with care to avoid irritation
Idiom: Animated transitions
- smooth interpolation from one state to another
 - easy to compare
 - best case for animation
 - staging to reduce cognitive load
- example: animated transitions in statistical data graphics

Outline
- Session 1 8:30-10:10am
 Visualization Analysis Framework
 - Introduction Definitions
 - Analysis: What, Why, How
 - Marks and Channels
 - Session 2 10:20-11:30am
 Visualization Analysis Framework
 - Introduction Definitions
 - Analysis: What, Why, How
 - Marks and Channels
 - Session 3 2:00-3:10pm
 Spatial Properties
 - Arrange Tables
 - Arrange Spatial Data
 - Arrange Networks and Trans

Further Reading
Coordinate views: Design choice interaction

- Why not animation?
 - disparate frames and regions: comparison difficult
 - vs contiguous frames
 - vs coherent motion of group
 - safe special case: unanimated transitions

Partitioning: List alignment
- single bar chart with grouped bars
- split by state into regions
- all-scanned histogram builders update when any ranges change
- encoding different
- data all shared

Partitioning: Recursive subdivision
- split by neighborhood
- then by type
- then time
- years as rows
- months as columns
- color by price
- neighborhood patterns
- where it’s expansive
- where you pay much more for detached type

Superimposing limits
- few layers, but many lines
- up to a few dozen
- but not hundreds
- superimpose vs juxtapose: empirical study
- superimpose for local, multiple for global
- small max, global scope, discrimination
- same space for all multiples vs single superimposed
No unjustified 3D: Power of the plane
- High-ranked spatial position channels planar spatial position — not depth!
- We don’t really live in 3D; we see in 2.05D
 - Acquire more info on image plane quickly from eye movements
 - Acquire more info for depth slower, from head/body motion

Occlusion hides information
- Occlusion
- Interaction can resolve, but at cost of time and cognitive load

Perspective distortion loses information
- Perspective distortion
 - Interferes with all size channel encodings
 - Power of the plane is lost!

Unjustified 3D all too common, in the news and elsewhere
- Extruded curves: detailed comparisons impossible
- Perspective distortion dangers
- Occlusion: Hidden information
- Resolution over immersion
- Justified 3D: 3D legitimate for true 3D spatial data
 - Power of the plane
 - Disparity of depth
 - Occlusion hides information
 - Perspective distortion dangers
- Tiled text isn’t legible
 - Spatial layout
 - Text legibility
- For worse when tiled from image plane
- Tilt angle
- Further reading

Justified 3D: Economic growth curve
- Constrained navigation stroke through carefully designed viewpoints
- Figure first, form next
- Function first, form next

3D vs 2D bar charts
- 3D bars very difficult to justify!
 - Perspective distortion
 - Occlusion
- Faceting into 2D almost always better choice

Rules of Thumb
- No unjustified 3D
 - Power of the plane
 - Disparity of depth
 - Occlusion hides information
 - Perspective distortion dangers
- Tiled text isn’t legible
- No unjustified 3D
 - Eye sees beat memory
 - Resolution over immersion
 - Overview first, zoom and filter, details on demand
 - Responsiveness is required
 - Function first, form next

3D needs very careful justification for abstract data
- Emphasis in 1990s, but now skepticism
- Be especially careful with 3D for point clouds or networks

Perspective distortion
- Derives view from viewpoint
- Acquire more info on image plane quickly from eye movements
- Acquire more info for depth slower, from head/body motion

Depth vs power of the plane
- High-ranked spatial position channels: planar spatial position
- Not depth!

Magnitude Channels: Ordered Attributes
- Position on common scale
- Position on unaligned scale
- Length (1D size)
- Tilt/angle
- Area (2D size)
- Depth (3D position)

Sessions
- Session 1 8:30-10:10am
- Visualization Analysis Framework
 - Introduction: Definitions
 - Analysis: What, Why, How
 - Marks and Channels
- Session 2 10:30am-12:10pm
- Spatial Layout
 - Arrange Tables
 - Arrange Spatial Data
 - Arrange Networks and Trees
- Session 3 2:00-3:40pm
- Colored and Introspective
 - Map Color
 - Manipulate: Change, Select, Navigate
 - Facet: Juxtapose, Partition, Superimpose
Overview first, zoom and filter, details on demand

Responsiveness is required

Why not animation?

Resolution beats immersion

Eyes beat memory example: Cerebral

Design study methodology: definitions

Design Study Methodology

Further reading

Outline

Methodology for problem-driven work

Lessons learned from the trenches: 21 between us

Design study methodology: 32 pitfalls

• and how to avoid them

PF-1: premature design-commitment: jumping forward over stages premature
PF-2: premature commitment: insufficient knowledge of the literature weak
PF-3: premature collaboration: insufficient time before writing weak
PF-4: insufficient time available from potential collaborators weak
PF-5: insufficient time available from potential collaborators weak
PF-6: no need for visualization, problem can be automated weak
PF-7: researcher expertise does not match domain problem weak
PF-8: no need for research engineering vs. research project weak
PF-9: no need for change: existing tools are good enough weak

PF-10: insufficient data collected to write paper weak
PF-11: insufficient data collected to write paper weak
PF-12: insufficient data collected to write paper weak
PF-13: insufficient data collected to write paper weak
PF-14: insufficient data collected to write paper weak
PF-15: insufficient data collected to write paper weak
PF-16: insufficient data collected to write paper weak
PF-17: insufficient data collected to write paper weak
PF-18: insufficient data collected to write paper weak
PF-19: insufficient data collected to write paper weak
PF-20: insufficient data collected to write paper weak

ODC 222

I'm a domain expert! Wanna collaborate?

OFCourse!

Of course they need the cool technique I built last year!
Reflections from the stacks: Wholesale adoption inappropriate

More Information
- Book page (including tutorial lecture slides)
 - http://www.cs.ubc.ca/~tmm/talks.html#vad17fullday
- 20% promo code for book+ebook combo: MVN17
- Illustrations: Eamon Maguire
- Papers, videos, software, talks, courses
 - http://www.cs.ubc.ca/~tmm/papers
 - http://www.cs.ubc.ca/~tmm