Data Visualization Pitfalls to Avoid

Tamara Munzner

Department of Computer Science

University of British Columbia

Department of Industry, Innovation and Science, Economic and Analytical Services Division June 23 2017, Canberra Australia

http://www.cs.ubc.ca/~tmm/talks.html#vad17can-morn

Visualization (vis) defined & motivated

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

Visualization is suitable when there is a need to augment human capabilities rather than replace people with computational decision-making methods.

- human in the loop needs the details
 - -doesn't know exactly what questions to ask in advance
 - -longterm exploratory analysis
 - -presentation of known results
 - -stepping stone towards automation: refining, trustbuilding
- intended task, measurable definitions of effectiveness

more at:

Visualization Analysis and Design, Chapter I. Munzner. AK Peters Visualization Series, CRC Press, 2014.

Visualization Analysis & Design

Tamara Munzner

Why use an external representation?

Computer-based visualization systems providevisual representations of datasets designed to help people carry out tasks more effectively.

• external representation: replace cognition with perception

Expression color scale

Why represent all the data?

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

- summaries lose information, details matter
 - -confirm expected and find unexpected patterns
 - -assess validity of statistical model Anscombe's Quartet

Identical statistics 9 x mean x variance 10 7.5 y mean 3.75 y variance x/y correlation 0.816

https://www.youtube.com/watch?v=DbJyPELmhJc

Same Stats, Different Graphs

What resource limitations are we faced with?

Vis designers must take into account three very different kinds of resource limitations: those of computers, of humans, and of displays.

- computational limits
 - -processing time
 - -system memory
- human limits
 - –human attention and memory
- display limits
 - -pixels are precious resource, the most constrained resource
 - -information density: ratio of space used to encode info vs unused whitespace
 - tradeoff between clutter and wasting space, find sweet spot between dense and sparse

Nested model: Four levels of vis design

• domain situation

[A Nested Model of Visualization Design and Validation. Munzner. IEEETVCG 15(6):921-928, 2009 (Proc. InfoVis 2009).]

- -who are the target users?
- abstraction
 - -translate from specifics of domain to vocabulary of vis
 - what is shown? data abstraction
 - why is the user looking at it? task abstraction
- idiom
 - -how is it shown?
 - visual encoding idiom: how to draw
 - interaction idiom: how to manipulate
- algorithm
 - -efficient computation

[A Multi-Level Typology of Abstract Visualization Tasks Brehmer and Munzner. IEEE TVCG 19(12):2376-2385, 2013 (Proc. InfoVis 2013).]

Threats to validity differ at each level

L Domain situation You misunderstood their needs

Data/task abstraction You're showing them the wrong thing

Wisual encoding/interaction idiom The way you show it doesn't work

Algorithm WW Your code is too slow

[A Nested Model of Visualization Design and Validation. Munzner. IEEE TVCG 15(6):921-928, 2009 (Proc. InfoVis 2009).]

Evaluate success at each level with methods from different fields

anthropology/ ethnography

design

computer science

cognitive psychology anthropology/ ethnography

1	Domain situation Observe target users using existing tools
	Data/task abstraction
	Visual encoding/interaction idiom Justify design with respect to alternatives
	Algorithm Measure system time/memory Analyze computational complexity
	Analyze results qualitatively Measure human time with lab experiment (<i>lab study</i>)
(Observe target users after deployment (<i>field study</i>)
M	leasure adoption

[A Nested Model of Visualization Design and Validation. Munzner. IEEE TVCG 15(6):921-928, 2009 (Proc. InfoVis 2009).]

8

Design Study Methodology

Reflections from the Trenches and from the Stacks

http://www.cs.ubc.ca/labs/imager/tr/2012/dsm/

Design Study Methodology: Reflections from the Trenches and from the Stacks. SedImair, Meyer, Munzner. IEEE Trans. Visualization and Computer Graphics 18(12): 2431-2440, 2012 (Proc. InfoVis 2012).

Michael SedImair

Miriah Meyer

Tamara Munzner @tamaramunzner

Design Studies: Lessons learned after 21 of them

Cerebral genomics

MizBee genomics

Pathline genomics

MulteeSum genomics

Vismon fisheries management

MostVis in-car networks

Car-X-Ray in-car networks

ProgSpy2010 in-car networks

RelEx in-car networks

Cardiogram in-car networks

Constellation linguistics

LibVis cultural heritage

Caidants multicast

5	5
Acres 1	- Stranger
-	and the second s

SessionViewer web log analysis

	2.0			-					
	* 10 Aug			2	lant-	÷.,			
	* 10 mm				dana-	-	1.		
						- 15			
-						-			
	1005					20			
		-							
		-							
-									
	_	-	_			-		_	-
	_		_			_	_	_	

LiveRAC server hosting

PowerSetViewer data mining

QuestVis sustainability

WiKeVis in-car networks

AutobahnVis in-car networks

VisTra in-car networks

LastHistory music listening

Methodology for Problem-Driven Work

• definitions

• 9-stage framework

 32 pitfalls and how to avoid them

PF-1	premature advance: jumping forward over stages	general
PF-2	premature start: insufficient knowledge of vis literature	learn
PF-3	premature commitment: collaboration with wrong people	winnow
PF-4	no real data available (yet)	winnow
PF-5	insufficient time available from potential collaborators	winnow
PF-6	no need for visualization: problem can be automated	winnow
PF-7	researcher expertise does not match domain problem	winnow
PF-8	no need for research: engineering vs. research project	winnow
PF-9	no need for change: existing tools are good enough	winnow

			What?		
	D	atasets			A
 → Data Types → Items → → Data and Dat Tables 	Attributes aset Types	→ Links Fields	→ Positions	→ Grids	 → Attribut → Cate + → Ord
Items Attributes	Trees Items (nodes) Links Attributes	Grids Positions Attributes	Items Positions	Sets, Lists Items	→ Or ↑ → Qu
→ Dataset Type → Tables Attribute (rows) Cell con → Multidimen Key 2 Attributes	S → N es (columns) taining value <i>sional Table</i> Value in cell	Vetworks	→ Fields (Co Grid (Node (item)	tes (columns)	 → Orderin → Sequ → Diven → Cyclic ↓
→ Geometry	(Spatial) Position		 → Dataset A → Static 	vailability	→ Dynamic

Attributes

ute Types

egorical

dered

rdinal

uantitative

ing Direction

uential

erging

ic

Three major datatypes

Types: Datasets and data

Dataset Types \rightarrow

→ Tables

→ Categorical

→ Ordered

Actions: Analyze, Query

- analyze
 - -consume
 - discover vs present - aka explore vs explain
 - enjoy
 - aka casual, social
 - -produce
 - annotate, record, derive
 - query
 - -how much data matters?
 - one, some, all
 - independent choices

Derive: Crucial Design Choice

- don't just draw what you're given!
 - -decide what the right thing to show is
 - -create it with a series of transformations from the original dataset -draw that
- one of the four major strategies for handling complexity

trade balance = exports – imports

Derived Data

Original Data

Targets

 $(\rightarrow$

→ All Data

→ Attributes

How?

En	code		Manipulate
→ Arrange→ Express	→ Separate	 Map from categorical and ordered attributes 	Ohange Image
→ Order	→ Align	$\rightarrow Color$ $\rightarrow Hue \qquad \rightarrow Saturation \rightarrow Luminance$	Select
→ Use		→ Size, Angle, Curvature, ■ ■ □ /// □)))	→ Navigate
		→ Shape + ● ■ ▲	
What? Why? How?		Motion Direction, Rate, Frequency,	

How to encode: Arrange space, map channels

Encode

20

Definitions: Marks and channels

Encoding visually with marks and channels

• analyze idiom structure

-as combination of marks and channels

1: vertical position

2: vertical position horizontal position 3:

vertical position horizontal position color hue

mark: line

mark: point

mark: point

4: vertical position horizontal position color hue size (area)

mark: point

Channels

Channels: Matching Types

-match channel and data characteristics

Channels: Rankings

- expressiveness principle -match channel and data characteristics
- effectiveness principle
 - -encode most important attributes with highest ranked channels

Challenges of Color

Top 10 HSC subjects (excluding English)

Categorical vs ordered color

Annual sales by state

Stone.Tableau Customer Conference 2014.]

[Seriously Colorful: Advanced Color Principles & Practices.

Decomposing color

- first rule of color: do not talk about color! -color is confusing if treated as monolithic
- decompose into three channels
 - -ordered can show magnitude
 - Iuminance
 - saturation
 - -categorical can show identity

• hue

channels have different properties

-what they convey directly to perceptual system

-how much they can convey: how many discriminable bins can we use?

Luminance

- need luminance for edge detection
 - -fine-grained detail only visible through luminance contrast
 - -legible text requires luminance contrast!
- intrinsic perceptual ordering

Lightness information

Stone.Tableau Customer Conference 2014.]

Color information

[Seriously Colorful: Advanced Color Principles & Practices.

Spectral sensitivity

Visible Spectrum

Opponent color and color deficiency

• perceptual processing before optic nerve

-one achromatic luminance channel L

-edge detection through luminance contrast

-two chroma channels, R-G and Y-B axis

- "color blind" if one axis has degraded acuity
 - -8% of men are red/green color deficient

-blue/yellow is rare

Stone.Tableau Customer Conference 2014.]

[Seriously Colorful: Advanced Color Principles & Practices.

Designing for color deficiency: Check with simulator

Normal vision

Deuteranope Protanope

Tritanope

Stone.Tableau Customer Conference 2014.]

http://rehue.net

[Seriously Colorful: Advanced Color Principles & Practices.

Designing for color deficiency: Avoid encoding by hue alone

- redundantly encode \bullet
 - vary luminance
 - change shape

Change the shape

Vary luminance

Deuteranope simulation

Color deficiency: Reduces color to 2 dimensions

[Seriously Colorful: Advanced Color Principles & Practices. Stone. Tableau Customer Conference 2014.]

Designing for color deficiency: Blue-Orange is safe

[Seriously Colorful: Advanced Color Principles & Practices. Stone. Tableau Customer Conference 2014.]

212 6
, J Nev
iebec: M
the mast
Y
the for
0
15000
1 2
1 4 2
3 marto
Vermone
New Hampshi
Massachusett
Rhode Island
Connecticut
ew Jersey
elaware
land
of Columbia
-
9 Pa
Energy Contraction
and and

Bezold Effect: Outlines matter

• color constancy: simultaneous contrast effect

[Seriously Colorful: Advanced Color Principles & Practices. Stone. Tableau Customer Conference 2014.]

Color/Lightness constancy: Illumination conditions

Image courtesy of John McCann

Color/Lightness constancy: Illumination conditions

Image courtesy of John McCann

Categorical color: limited number of discriminable bins

- human perception built on relative comparisons

 great if color contiguous
 surprisingly bad for absolute comparisons
- noncontiguous small regions of color
 - -fewer bins than you want
 - -rule of thumb: 6-12 bins, including background and highlights

-alternatives? this afternoon!

[Cinteny: flexible analysis and visualization of synteny and genome rearrangements in multiple organisms. Sinha and Meller. BMC Bioinformatics, 8:82, 2007.]

problems

- -perceptually unordered
- -perceptually nonlinear
- benefits
 - -fine-grained structure visible and nameable

[Transfer Functions in Direct Volume Rendering: Design, Interface, Interaction. Kindlmann. SIGGRAPH 2002 Course Notes]

[Why Should Engineers Be Worried About Color? Treinish and Rogowitz 1998. http://www.research.ibm.com/people/I/Iloydt/color/color.HTM]

problems

- -perceptually unordered
- -perceptually nonlinear
- benefits
 - -fine-grained structure visible and nameable
- alternatives
 - -large-scale structure: fewer hues

[A Rule-based Tool for Assisting Colormap Selection. Bergman,. Rogowitz, and. Treinish. Proc. IEEE Visualization (Vis), pp. 118–125, 1995.]

[Transfer Functions in Direct Volume Rendering: Design, Interface, Interaction. Kindlmann. SIGGRAPH 2002 Course Notes]

[Why Should Engineers Be Worried About Color? Treinish and Rogowitz 1998. http://www.research.ibm.com/people/I/Iloydt/color/color.HTM]

• problems

- -perceptually unordered
- -perceptually nonlinear
- benefits
 - fine-grained structure visible and nameable
- alternatives
 - –large-scale structure: fewer hues
 - –fine structure: multiple hues with monotonically increasing luminance [eg viridis R/python]

[A Rule-based Tool for Assisting Colormap Selection. Bergman,. Rogowitz, and. Treinish. Proc. IEEE Visualization (Vis), pp. 118–125, 1995.]

[Why Should Engineers Be Worried About Color? Treinish and Rogowitz 1998. http://www.research.ibm.com/people/l/lloydt/color/color.HTM]

[Transfer Functions in Direct Volume Rendering: Design, Interface, Interaction. Kindlmann. SIGGRAPH 2002 Course Notes]

Viridis

 colorful, perceptually uniform, colorblind-safe, monotonically increasing luminance

heat

ggplot defaul

brewer blues

brewer yellow-gree

1-blue	
h-blue	
_	

43

• problems

- -perceptually unordered
- -perceptually nonlinear
- benefits
 - fine-grained structure visible and nameable
- alternatives
 - –large-scale structure: fewer hues
 - -fine structure: multiple hues with monotonically increasing luminance [eg viridis R/python]
 - -segmented rainbows for binned or categorical

[A Rule-based Tool for Assisting Colormap Selection. Bergman,. Rogowitz, and. Treinish. Proc. IEEE Visualization (Vis), pp. 118–125, 1995.]

[Why Should Engineers Be Worried About Color? Treinish and Rogowitz 1998. http://www.research.ibm.com/people/I/lloydt/color/color.HTM]

[Transfer Functions in Direct Volume Rendering: Design, Interface, Interaction. Kindlmann. SIGGRAPH 2002 Course Notes]

after [Color Use Guidelines for Mapping and Visualization. Brewer, 1994. http://www.personal.psu.edu/faculty/c/a/cab38/ColorSch/Schemes.html]

Sequential

after [Color Use Guidelines for Mapping and Visualization. Brewer, 1994. http://www.personal.psu.edu/faculty/c/a/cab38/ColorSch/Schemes.html]

-1 0 +1

after [Color Use Guidelines for Mapping and Visualization. Brewer, 1994. http://www.personal.psu.edu/faculty/c/a/cab38/ColorSch/Schemes.html]

- -size heavily affects salience
 - small regions need high saturation
 - large need low saturation
- -saturation & luminance: 3-4 bins max
 - also not separable from transparency

after [Color Use Guidelines for Mapping and Visualization. Brewer, 1994. http://www.personal.psu.edu/faculty/c/a/cab38/ColorSch/Schemes.html]

-1 0 +1

Visual encoding: 2D vs 3D

2D good, 3D better?
 not so fast...

http://amberleyromo.com/images/Bookcover/Animal-Farm.png

49

Unjustified 3D all too common, in the news and elsewhere

http://viz.wtf/post/137826497077/eye-popping-3d-triangles

http://viz.wtf/post/139002022202/designer-drugs-ht-ducqn

Depth vs power of the plane

• high-ranked spatial position channels: planar spatial position -not depth!

Life in 3D?...

• we don't really live in 3D: we see in 2.05D -acquire more info on image plane quickly from eye movements -acquire more info for depth slower, from head/body motion

[adapted from Visual Thinking for Design. Ware. Morgan Kaufmann 2010.]

We can only see the outside shell of the world

Occlusion hides information

- occlusion
- interaction complexity

[Distortion Viewing Techniques for 3D Data. Carpendale et al. InfoVis 1996.]

53

Perspective distortion loses information

perspective distortion

-interferes with all size channel encodings

-power of the plane is lost!

[Visualizing the Results of Multimedia Web Search Engines. Mukherjea, Hirata, and Hara. InfoVis 96]

3D vs 2D bar charts

• 3D bars never a good idea!

[http://perceptualedge.com/files/GraphDesignIQ.html]

No unjustified 3D example: Time-series data

• extruded curves: detailed comparisons impossible

[Cluster and Calendar based Visualization of Time Series Data. van Wijk and van Selow, Proc. InfoVis 99.]

No unjustified 3D example: Transform for new data abstraction

- derived data: cluster hierarchy
- juxtapose multiple views: calendar, superimposed 2D curves

[Cluster and Calendar based Visualization of Time Series Data. van Wijk and van Selow, Proc. InfoVis 99.]

Justified 3D: shape perception

 benefits outweigh costs when task is shape perception for 3D spatial data

-interactive navigation supports synthesis across many viewpoints

[Image-Based Streamline Generation and Rendering. Li and Shen. IEEE Trans. Visualization and Computer Graphics (TVCG) 13:3 (2007), 630–640.]

No unjustified 3D

- 3D legitimate for true 3D spatial data
- 3D needs very careful justification for abstract data
 - enthusiasm in 1990s, but now skepticism
 - be especially careful with 3D for point clouds or networks

[WEBPATH-a three dimensional Web history. Frecon and Smith. Proc. InfoVis 1999]

Justified 3D: Economic growth curve

A 3-D View of a Chart That Predicts The Economic Future: The Yield Curve

By GREGOR AISCH and AMANDA COX MARCH 18, 2015

http://www.nytimes.com/interactive/2015/03/19/upshot/3d-yield-curve-economic-growth.html

Four strategies to handle complexity: More this afternoon!

1	iC	u	u	C	

More Information

- this talk www.cs.ubc.ca/~tmm/talks.html#vad17can-morn
- afternoon session in more depth www.cs.ubc.ca/~tmm/talks.html#vad17can-aft
- book http://www.cs.ubc.ca/~tmm/vadbook
 - -20% off promo code, book+ebook combo: HVN17
 - <u>http://www.crcpress.com/product/isbn/9781466508910</u>
- papers, videos, software, talks, courses http://www.cs.ubc.ca/group/infovis http://www.cs.ubc.ca/~tmm

A K Peters Visualization Series

Illustrations by Ramonn Maguin

<u>@tamaramunzner</u>

Visualization Analysis & Design

Tamara Munzner

Visualization Analysis and Design. Munzner. A K Peters Visualization Series, CRC Press, Visualization Series, 2014.