Outline

• **Session 1 10-11:30am**
 Data Visualization Pitfalls to Avoid
 – Introduction
 – Color
 – Space: 2D vs 3D

• **Session 2 12:30-3pm**
 Visualization Analysis & Design, In More Depth
 – Marks and Channels, Perception
 – Arrange Tables
 – Arrange Spatial Data
 – Arrange Networks
 – Manipulate: Change, Select, Navigate
 – Facet: Juxtapose, Partition, Superimpose
 – Reduce: Filter, Aggregate

http://www.cs.ubc.ca/~tmm/talks.html#vad17can-aft
@tamaramunzner
What?

Why?

How?

Datasets

<table>
<thead>
<tr>
<th>Types</th>
<th>Data Types</th>
<th>Data and Dataset Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tables</td>
<td>Items</td>
<td>Networks & Trees</td>
</tr>
<tr>
<td></td>
<td>Attributes</td>
<td>Items (nodes)</td>
</tr>
<tr>
<td></td>
<td>Links</td>
<td>Positions</td>
</tr>
<tr>
<td></td>
<td>Positions</td>
<td>Grids</td>
</tr>
<tr>
<td></td>
<td>Grids</td>
<td>Items</td>
</tr>
<tr>
<td></td>
<td>Clusters, Sets, Lists</td>
<td>Items</td>
</tr>
</tbody>
</table>

Attributes

- **Attribute Types**
 - Categorical
 - Ordered
 - Ordinal
 - Quantitative

Ordering Direction

- Sequential
- Diverging
- Cyclic

Dataset Availability

- Static
- Dynamic
• \{action, target\} pairs
 – discover distribution
 – compare trends
 – locate outliers
 – browse topology

Analyzing

- **Consume**
 - Discover
 - Present
 - Enjoy

- **Produce**
 - Annotate
 - Record
 - Derive

Searching

<table>
<thead>
<tr>
<th>Target known</th>
<th>Target unknown</th>
</tr>
</thead>
</table>

- **Location known**
 - Lookup
 - Browse

- **Location unknown**
 - Locate
 - Explore

Querying

- **Identify**
- **Compare**
- **Summarize**

Actions

Targets

- **All Data**
 - Trends
 - Outliers
 - Features

- **Attributes**
 - One
 - Distribution
 - Many
 - Dependency
 - Correlation
 - Similarity

- **Network Data**
 - Topology
 - Paths

- **Spatial Data**
 - Shape
How?

Encode

- **Arrange**
 - Express
 - Separate
- **Order**
 - Align
- **Use**

Manipulate

- **Map**
 - from *categorical* and *ordered* attributes
 - Color
 - Hue
 - Saturation
 - Luminance
 - Size, Angle, Curvature, ...
- **Shape**
 - + • ■ ▲
- **Motion**
 - Direction, Rate, Frequency, ...

Facet

- **Change**
 - ![Change Diagram]
- **Select**
 - ![Select Diagram]
- **Navigate**
 - ![Navigate Diagram]
- **Superimpose**
 - ![Superimpose Diagram]

Reduce

- **Filter**
 - ![Filter Diagram]
- **Aggregate**
 - ![Aggregate Diagram]
- **Embed**
 - ![Embed Diagram]

Why?

- **What?**
- **Why?**
- **How?**
Channels: Rankings

Magnitude Channels: Ordered Attributes

- Position on common scale
- Position on unaligned scale
- Length (1D size)
- Tilt/angle
- Area (2D size)
- Depth (3D position)
- Color luminance
- Color saturation
- Curvature
- Volume (3D size)

Identity Channels: Categorical Attributes

- Spatial region
- Color hue
- Motion
- Shape

- **expressiveness principle**
 - match channel and data characteristics

- **effectiveness principle**
 - encode most important attributes with highest ranked channels
Channels: Expressiveness types and effectiveness rankings

Magnitude Channels: Ordered Attributes

- Position on common scale
- Position on unaligned scale
- Length (1D size)
- Tilt/angle
- Area (2D size)
- Depth (3D position)
- Color luminance
- Color saturation
- Curvature
- Volume (3D size)

Identity Channels: Categorical Attributes

- Spatial region
- Color hue
- Motion
- Shape

- expressiveness principle
 - match channel and data characteristics
- effectiveness principle
 - encode most important attributes with highest ranked channels
 - spatial position ranks high for both
Accuracy: Fundamental Theory

Steven’s Psychophysical Power Law: $S = I^N$
Accuracy: Vis experiments

Discriminability: How many usable steps?

• must be sufficient for number of attribute levels to show
 – linewidth: few bins

[mappa.mundi.net/maps/maps_014/telegeography.html]
Separability vs. Integrality

<table>
<thead>
<tr>
<th>Position</th>
<th>Size</th>
<th>Width</th>
<th>Red</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ Hue (Color)</td>
<td>+ Hue (Color)</td>
<td>+ Height</td>
<td>+ Green</td>
</tr>
</tbody>
</table>

- **Fully separable**: 2 groups each
- **Some interference**: 2 groups each
- **Some/significant interference**: 3 groups total: integral area
- **Major interference**: 4 groups total: integral hue
Popout

• find the red dot
 – how long does it take?

• parallel processing on many individual channels
 – speed independent of distractor count
 – speed depends on channel and amount of difference from distractors

• serial search for (almost all) combinations
 – speed depends on number of distractors
Popout

• many channels: tilt, size, shape, proximity, shadow direction, ...
• but not all! parallel line pairs do not pop out from tilted pairs
Grouping

- containment
- connection

Marks as Links

- Containment
- Connection

Identity Channels: Categorical Attributes

- Spatial region
- Color hue
- Motion
- Shape

- proximity
 - same spatial region
- similarity
 - same values as other categorical channels
Relative vs. absolute judgements

- perceptual system mostly operates with relative judgements, not absolute
 - that’s why accuracy increases with common frame/scale and alignment
 - Weber’s Law: ratio of increment to background is constant
 - filled rectangles differ in length by 1:9, difficult judgement
 - white rectangles differ in length by 1:2, easy judgement

Relative luminance judgements

- perception of luminance is contextual based on contrast with surroundings

http://persci.mit.edu/gallery/checkershadow
Relative color judgements

• color constancy across broad range of illumination conditions

http://www.purveslab.net/seeforyourself/
Further reading

 –Chap 5: Marks and Channels

Outline

• **Session 1 10-11:30am**
 Data Visualization Pitfalls to Avoid
 – Introduction
 – Color
 – Space: 2D vs 3D

• **Session 2 12:30-3pm**
 Visualization Analysis & Design, In More Depth
 – Marks and Channels, Perception
 – Arrange Tables
 – Arrange Spatial Data
 – Arrange Networks
 – Manipulate: Change, Select, Navigate
 – Facet: Juxtapose, Partition, Superimpose
 – Reduce: Filter, Aggregate

http://www.cs.ubc.ca/~tmm/talks.html#vad17can-aft
@tamaramunzner
How?

Encode

<table>
<thead>
<tr>
<th>Arrange</th>
<th>Express</th>
<th>Separate</th>
<th>Order</th>
<th>Align</th>
<th>Use</th>
</tr>
</thead>
</table>

- **Map** from categorical and ordered attributes
 - **Color**
 - Hue
 - Saturation
 - Luminance
 - **Size, Angle, Curvature, ...**
 - **Shape**
 - + ● □ △
 - **Motion**
 - Direction, Rate, Frequency, ...

Manipulate

- **Change**
- **Select**
- **Navigate**

Facet

- **Juxtapose**
- **Partition**
- **Superimpose**

Reduce

- **Filter**
- **Aggregate**
- **Embed**

What?

Why?

How?
Encode tables: Arrange space

Encode

- **Arrange**
 - Express
 - Separate
 - Order
 - Align

- Encode tables: Arrange space
Keys and values

- **key**
 - independent attribute
 - used as unique index to look up items
 - simple tables: 1 key
 - multidimensional tables: multiple keys

- **value**
 - dependent attribute, value of cell

- classify arrangements by key count
 - 0, 1, 2, many...

Express Values

- 1 Key
 - List
- 2 Keys
 - Matrix
- 3 Keys
 - Volume
- Many Keys
 - Recursive Subdivision
0 Keys

Express Values

1 Key
List

2 Keys
Matrix

3 Keys
Volume

Many Keys
Recursive Subdivision
Idiom: **scatterplot**

- **express values**
 - quantitative attributes
- **no keys, only values**
 - data
 - 2 quant attrs
 - mark: points
 - channels
 - horiz + vert position
- **tasks**
 - find trends, outliers, distribution, correlation, clusters
- **scalability**
 - hundreds of items

Some keys

Express Values

1 Key
List

2 Keys
Matrix

3 Keys
Volume

Many Keys
Recursive Subdivision
Some keys: Categorical regions

- **regions**: contiguous bounded areas distinct from each other
 - using space to *separate* (proximity)
 - following expressiveness principle for categorical attributes

- use ordered attribute to *order* and *align* regions

<table>
<thead>
<tr>
<th>1 Key</th>
<th>2 Keys</th>
<th>3 Keys</th>
<th>Many Keys</th>
</tr>
</thead>
<tbody>
<tr>
<td>List</td>
<td>Matrix</td>
<td>Volume</td>
<td>Recursive Subdivision</td>
</tr>
</tbody>
</table>

Separate

Order

Align
Idiom: **bar chart**

- one key, one value
 - data
 - 1 categ attrib, 1 quant attrib
 - mark: lines
 - channels
 - length to express quant value
 - spatial regions: one per mark
 - separated horizontally, aligned vertically
 - ordered by quant attrib
 » by label (alphabetical), by length attrib (data-driven)
 - task
 - compare, lookup values
 - scalability
 - dozens to hundreds of levels for key attrib
Separated and Aligned but not Ordered

LIMITATION: Hard to know rank. What’s the 4th most? The 7th?

[Slide courtesy of Ben Jones]
Separate, Aligned and Ordered

[Slide courtesy of Ben Jones]
Separated but not Ordered or Aligned

LIMITATION: Hard to make comparisons

[Slide courtesy of Ben Jones]
Idiom: **line chart**

- one key, one value
 - data
 - 2 quant attribs
 - mark: points
 - line connection marks between them
 - channels
 - aligned lengths to express quant value
 - separated and ordered by key attrib into horizontal regions
- task
 - find trend
 - connection marks emphasize ordering of items along key axis by explicitly showing relationship between one item and the next
Idiom: **line chart / dot plot**

- one key, one value
 - data
 - 2 quant attribs
 - mark: points
 - line connection marks between them
 - channels
 - aligned lengths to express quant value
 - separated and ordered by key attrib into horizontal regions
- task
 - find trend
 - connection marks emphasize ordering of items along key axis by explicitly showing relationship between one item and the next
- scalability
 - hundreds of key levels, hundreds of value levels
Choosing bar vs line charts

• depends on type of key attrib
 – bar charts if categorical
 – line charts if ordered
• do not use line charts for categorical key attribs
 – violates expressiveness principle
 • implication of trend so strong that it overrides semantics!
 – “The more male a person is, the taller he/she is”

Chart axes

• labelled axis is critical
• avoid cropping y-axis
 – include 0 at bottom left
 – or slope misleads

• dual axes controversial
 – acceptable if commensurate
 – beware, very easy to mislead!

http://www.thefunctionalart.com/2015/10/if-you-see-bullshit-say-bullshit.html
Idiom: connected scatterplots

• scatterplot with line connection marks
 – popular in journalism
 – horiz + vert axes: value attribs
 – line connection marks: temporal order
 – alternative to dual-axis charts
 • horiz: time
 • vert: two value attribs

• empirical study
 – engaging, but correlation unclear

http://steveharoz.com/research/connected_scatterplot/
Idiom: Indexed line charts

• data: 2 quant attires
 – 1 key + 1 value

• derived data: new quant value attrib
 – index
 – plot instead of original value

• task: show change over time
 – principle: normalized, not absolute

• scalability
 – same as standard line chart

https://public.tableau.com/profile/ben.jones#!/vizhome/CAStateRevenues/Revenues
Idiom: **Gantt charts**

- one key, two (related) values
 - data
 - 1 categ attrib, 2 quant attribs
 - mark: line
 - length: duration
- channels
 - horiz position: start time (+end from duration)
- task
 - emphasize temporal overlaps, start/end dependencies between items
- scalability
 - dozens of key levels
 - hundreds of value levels

Idiom: **Slopegraphs**

- two values
 - data
 - 2 quant value attribs
 - mark: point + line
 - line connecting mark between pts
- channels
 - 2 vertical pos: express attrib value
- task
 - emphasize changes in rank/value
- scalability
 - hundreds of value levels

https://public.tableau.com/profile/ben.jones#!/vizhome/Slopegraphs/Slopegraphs
Breaking conventions

- presentation vs exploration
 - engaging/evocative
 - inverted y axis
- blood drips down on Poe

https://public.tableau.com/profile/ben.jones#!/vizhome/EdgarAllanPoeViz/EdgarAllanPoeViz
2 Keys

Express Values ➔ 1 Key List ➔ 2 Keys Matrix ➔ 3 Keys Volume ➔ Many Keys Recursive Subdivision
Idiom: heatmap

- two keys, one value
 - data
 - 2 categ attribs (gene, experimental condition)
 - 1 quant attrib (expression levels)
 - marks: area
 - separate and align in 2D matrix
 - indexed by 2 categorical attributes
 - channels
 - color by quant attrib
 - (ordered diverging colormap)
 - task
 - find clusters, outliers
- scalability
 - 1M items, 100s of categ levels, ~10 quant attrib levels
Axis Orientation

- Rectilinear
- Parallel
- Radial
Idioms: **scatterplot matrix, parallel coordinates**

- **scatterplot matrix (SPLOM)**
 - rectilinear axes, point mark
 - all possible pairs of axes
 - scalability
 - one dozen attribs
 - dozens to hundreds of items

- **parallel coordinates**
 - parallel axes, jagged line representing item
 - rectilinear axes, item as point
 - axis ordering is major challenge
 - scalability
 - dozens of attribs
 - hundreds of items

Idioms: **radial bar chart, star plot**

- **radial bar chart**
 - radial axes meet at central ring, line mark

- **star plot**
 - radial axes, meet at central point, line mark

- **bar chart**
 - rectilinear axes, aligned vertically

- **accuracy**
 - length unaligned with radial
 - less accurate than aligned with rectilinear

Radial Orientation: Radar Plots

LIMITATION: Not good when categories aren’t cyclic

[Slide courtesy of Ben Jones]
“Radar graphs: Avoid them (99.9% of the time)”

[Slide courtesy of Ben Jones]
Idioms: *pie chart, polar area chart*

- **pie chart**
 - area marks with angle channel
 - accuracy: angle/area less accurate than line length
 - arclength also less accurate than line length

- **polar area chart**
 - area marks with length channel
 - more direct analog to bar charts

- **data**
 - 1 categ key attrib, 1 quant value attrib

- **task**
 - part-to-whole judgements
Idioms: **normalized stacked bar chart**

- task
 - part-to-whole judgements

- **normalized stacked bar chart**
 - stacked bar chart, normalized to full vert height
 - single stacked bar equivalent to full pie
 - high information density: requires narrow rectangle

- **pie chart**
 - information density: requires large circle

http://bl.ocks.org/mbostock/3887235
http://bl.ocks.org/mbostock/3886208
http://bl.ocks.org/mbostock/3886394.
Idiom: *glyphmaps*

- rectilinear good for linear vs nonlinear trends

- radial good for cyclic patterns

Orientation limitations

- rectilinear: scalability wrt #axes
 - 2 axes best
 - 3 problematic
 - more in afternoon
 - 4+ impossible
- parallel: unfamiliarity, training time
- radial: perceptual limits
 - angles lower precision than lengths
 - asymmetry between angle and length
 - can be exploited!

Layout Density

Dense

Arrange tables

Express Values

Separate, Order, Align Regions

Separate

Order

Align

1 Key
List

2 Keys
Matrix

3 Keys
Volume

Many Keys
Recursive Subdivision

Axis Orientation

Rectilinear

Parallel

Radial

Layout Density

Dense

Space-Filling

Rectilinear

Parallel

Radial

Space-Filling

Layout Density

1 Key
2 Keys
3 Keys
Many Keys

List
Matrix
Volume
Recursive Subdivision
Further reading

 —Chap 7: Arrange Tables

• A Brief History of Data Visualization. Friendly. 2008.
 http://www.datavis.ca/milestones
Outline

• **Session 1 10-11:30am**
 Data Visualization Pitfalls to Avoid
 – Introduction
 – Color
 – Space: 2D vs 3D

• **Session 2 12:30-3pm**
 Visualization Analysis & Design, In More Depth
 – Marks and Channels, Perception
 – Arrange Tables
 – Arrange Spatial Data
 – Arrange Networks
 – Manipulate: Change, Select, Navigate
 – Facet: Juxtapose, Partition, Superimpose
 – Reduce: Filter, Aggregate

http://www.cs.ubc.ca/~tmm/talks.html#vad17can-aft @tamaramunzner
Idiom: choropleth map

- **use** given spatial data
 - when central task is understanding spatial relationships

- **data**
 - geographic geometry
 - table with 1 quant attribute per region

- **encoding**
 - use given geometry for area mark boundaries
 - sequential segmented colormap [more later]

http://bl.ocks.org/mbostock/4060606
Beware: Population maps trickiness!

[https://xkcd.com/1138]
Population maps trickiness

• beware!
• absolute vs relative again
 • population density vs per capita
• investigate with Ben Jones Tableau Public demo
 • http://public.tableau.com/profile/ben.jones#!/vizhome/PopVsFin/PopVsFin

Are Maps of Financial Variables just Population Maps?
 • yes, unless you look at per capita (relative) numbers

[https://xkcd.com/1138]
Idiom: Bayesian surprise maps

• use models of expectations to highlight surprising values
• confounds (population) and variance (sparsity)

https://medium.com/@uwdata/surprise-maps-showing-the-unexpected-e92b67398865
Outline

• **Session 1 10-11:30am**
 Data Visualization Pitfalls to Avoid
 – Introduction
 – Color
 – Space: 2D vs 3D

• **Session 2 12:30-3pm**
 Visualization Analysis & Design, In More Depth
 – Marks and Channels, Perception
 – Arrange Tables
 – Arrange Spatial Data
 – Arrange Networks
 – Manipulate: Change, Select, Navigate
 – Facet: Juxtapose, Partition, Superimpose
 – Reduce: Filter, Aggregate

http://www.cs.ubc.ca/~tmm/talks.html#vad17can-aft @tamaramunzner
Arrange networks and trees

Node–Link Diagrams
Connection Marks
✔️ NETWORKS✔️ TREES

Adjacency Matrix
Derived Table
✔️ NETWORKS✔️ TREES

Enclosure
Containment Marks
❌ NETWORKS✔️ TREES
Idiom: **force-directed placement**

- **visual encoding**
 - link connection marks, node point marks

- **considerations**
 - spatial position: no meaning directly encoded
 - left free to minimize crossings
 - proximity semantics?
 - sometimes meaningful
 - sometimes arbitrary, artifact of layout algorithm
 - tension with length
 - long edges more visually salient than short

- **tasks**
 - explore topology; locate paths, clusters

- **scalability**
 - node/edge density \(E < 4N \)

Idiom: **adjacency matrix view**

- **data:** network
 - transform into same data/encoding as heatmap
- **derived data:** table from network
 - 1 quant attrib
 - weighted edge between nodes
 - 2 categ attribs: node list x 2
- **visual encoding**
 - cell shows presence/absence of edge
- **scalability**
 - 1K nodes, 1M edges

Figure 7.5: Comparing matrix and node-link views of a five-node network.

- **a)** Matrix view.
- **b)** Node-link view. From [Henry et al. 07], Figure 3b and 3a.

Network matrix views can achieve very high information density, up to a limit of one thousand nodes and one million edges, just like cluster heatmaps and all other matrix views that use small area marks.

Technique

network matrix view

Data Types

network

Derived Data

table: network nodes as keys, link status between two nodes as values

View Comp.

space: area marks in 2D matrix alignment

Scalability

nodes: 1K

edges: 1M

7.1.3.3 Multiple Keys: Partition and Subdivide

When a dataset has only one key, then it is straightforward to use that key to separate into one region.

Connection vs. adjacency comparison

- **adjacency matrix strengths**
 - predictability, scalability, supports reordering
 - some topology tasks trainable
- **node-link diagram strengths**
 - topology understanding, path tracing
 - intuitive, no training needed
- **empirical study**
 - node-link best for small networks
 - matrix best for large networks
 - if tasks don’t involve topological structure!

Idiom: radial node-link tree

• data
 – tree

• encoding
 – link connection marks
 – point node marks
 – radial axis orientation
 • angular proximity: siblings
 • distance from center: depth in tree

• tasks
 – understanding topology, following paths

• scalability
 – 1K - 10K nodes

Idiom: treemap

• data
 – tree
 – 1 quant attrib at leaf nodes

• encoding
 – area containment marks for hierarchical structure
 – rectilinear orientation
 – size encodes quant attrib

• tasks
 – query attribute at leaf nodes

• scalability
 – 1M leaf nodes

Link marks: Connection and containment

- marks as links (vs. nodes)
 - common case in network drawing
 - 1D case: connection
 - ex: all node-link diagrams
 - emphasizes topology, path tracing
 - networks and trees
 - 2D case: containment
 - ex: all treemap variants
 - emphasizes attribute values at leaves (size coding)
 - only trees

Further reading

 – Chap 9: Arrange Networks and Trees

Outline

• Session 1 10-11:30am
 Data Visualization Pitfalls to Avoid
 – Introduction
 – Color
 – Space: 2D vs 3D

• Session 2 12:30-3pm
 Visualization Analysis & Design, In More Depth
 – Marks and Channels, Perception
 – Arrange Tables
 – Arrange Spatial Data
 – Arrange Networks
 – Manipulate: Change, Select, Navigate
 – Facet: Juxtapose, Partition, Superimpose
 – Reduce: Filter, Aggregate

http://www.cs.ubc.ca/~tmm/talks.html#vad17can-aft
@tamaramunzner
 Encode

- Arrange
 - Express
 - Separate
- Order
 - Align
- Use

Map
from **categorical** and **ordered** attributes

- Color
 - Hue
 - Saturation
 - Luminance
- Size, Angle, Curvature, ...
- Shape
- Motion
 - Direction, Rate, Frequency, ...

Manipulate

- Change
- Select
- Navigate

Facet

- Juxtapose
- Partition
- Superimpose

Reduce

- Filter
- Aggregate
- Embed
How to handle complexity: 1 previous strategy + 3 more

- Derive
 - Derive new data to show within view
 - Change view over time
 - Facet across multiple views
 - Reduce items/attributes within single view

- Manipulate
 - Change
 - Select
 - Navigate

- Facet
 - Juxtapose
 - Partition
 - Superimpose

- Reduce
 - Filter
 - Aggregate
 - Embed
Manipulate

Change over Time

Navigate

Item Reduction

Attribute Reduction

Select

Zoom

Geometric or Semantic

Slice

Pan/Translate

Cut

Constrained

Project
Change over time

• change any of the other choices
 – encoding itself
 – parameters
 – arrange: rearrange, reorder
 – aggregation level, what is filtered...

 – interaction entails change
Idiom: **Re-encode**
System: **Tableau**

made using Tableau, http://tableausoftware.com
Idiom: **Reorder**

- data: tables with many attributes
- task: compare rankings

System: LineUp

Idiom: **Realign**

- stacked bars
 - easy to compare
 - first segment
 - total bar
- align to different segment
 - supports flexible comparison

System: LineUp

Idiom: **Animated transitions**

- smooth interpolation from one state to another
 - alternative to jump cuts, supports item tracking
 - best case for animation
 - staging to reduce cognitive load
- example: animated transitions in statistical data graphics

video: vimeo.com/19278444
Idiom: *Animated transitions - visual encoding change*

- smooth transition from one state to another
 - alternative to jump cuts, supports item tracking
 - best case for animation
 - staging to reduce cognitive load
Idiom: **Animated transition - tree detail**

- animated transition
 - network drilldown/rollup

[Collapsible Tree](https://bl.ocks.org/mbostock/4339083)
Idiom: **Animated transition - bar detail**

- example: hierarchical bar chart
 - add detail during transition to new level of detail

[Hierarchical Bar Chart](https://bl.ocks.org/mbostock/1283663)
Navigate: Changing item visibility

• change viewpoint
 – changes which items are visible within view
 – camera metaphor
 • zoom
 – geometric zoom: familiar semantics
 – semantic zoom: adapt object representation based on available pixels
 » dramatic change, or more subtle one
 • pan/translate
 • rotate
 – especially in 3D
– constrained navigation
 • often with animated transitions
 • often based on selection set
Further reading

 –*Chap 11: Manipulate View*

Outline

• **Session 1 10-11:30am**
 Data Visualization Pitfalls to Avoid
 – Introduction
 – Color
 – Space: 2D vs 3D

• **Session 2 12:30-3pm**
 Visualization Analysis & Design, In More Depth
 – Marks and Channels, Perception
 – Arrange Tables
 – Arrange Spatial Data
 – Arrange Networks
 – Manipulate: Change, Select, Navigate
 – Facet: Juxtapose, Partition, Superimpose
 – Reduce: Filter, Aggregate

http://www.cs.ubc.ca/~tmnr/talks.html#vad17can-aft @tamaramunzner
Facet

- **Juxtapose**

- **Partition**

- **Superimpose**
Juxtapose and coordinate views

- Share Encoding: Same/Different
 - Linked Highlighting

- Share Data: All/Subset/None

- Share Navigation
Idiom: **Linked highlighting**

- see how regions contiguous in one view are distributed within another
 - powerful and pervasive interaction idiom

- encoding: different
 - **multiform**

- data: all shared

Idiom: **bird’s-eye maps**

- encoding: same
- data: subset shared
- navigation: shared
 - bidirectional linking

- differences
 - viewpoint
 - (size)

- **overview-detail**

System: Google Maps

Idiom: Small multiples

- encoding: same
- data: none shared
 - different attributes for node colors
 - (same network layout)
- navigation: shared

System: Cerebral

Coordinate views: Design choice interaction

<table>
<thead>
<tr>
<th>Encoding</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Same</td>
<td>All: Redundant</td>
</tr>
<tr>
<td>Different</td>
<td>Multiform</td>
</tr>
</tbody>
</table>

- **why juxtapose views?**
 - benefits: eyes vs memory
 - lower cognitive load to move eyes between 2 views than remembering previous state with single changing view
 - costs: display area, 2 views side by side each have only half the area of one view
Why not animation?

• disparate frames and regions: comparison difficult
 – vs contiguous frames
 – vs small region
 – vs coherent motion of group

• safe special case
 – animated transitions
System: **Improvise**

- investigate power of multiple views
 - pushing limits on view count, interaction complexity
 - how many is ok?
 - open research question
- reorderable lists
 - easy lookup
 - useful when linked to other encodings

Partition into views

• how to divide data between views
 – split into regions by attributes
 – encodes association between items using spatial proximity
 – order of splits has major implications for what patterns are visible

• no strict dividing line
 – **view**: big/detailed
 • contiguous region in which visually encoded data is shown on the display
 – **glyph**: small/iconic
 • object with internal structure that arises from multiple marks
Partitioning: List alignment

- single bar chart with grouped bars
 - split by state into regions
 - complex glyph within each region showing all ages
 - compare: easy within state, hard across ages

- small-multiple bar charts
 - split by age into regions
 - one chart per region
 - compare: easy within age, harder across states
Partitioning: Recursive subdivision

- split by neighborhood
- then by type
- then time
 - years as rows
 - months as columns
- color by price
- neighborhood patterns
 - where it’s expensive
 - where you pay much more for detached type

System: HIVE

Partitioning: Recursive subdivision

• switch order of splits
 – type then neighborhood

• switch color
 – by price variation

• type patterns
 – within specific type, which neighborhoods inconsistent

Partitioning: Recursive subdivision

- different encoding for second-level regions
 - choropleth maps

System: HIVE

Partitioning: Recursive subdivision

• size regions by sale counts
 – not uniformly
• result: treemap

System: HIVE

Superimpose layers

- **layer**: set of objects spread out over region
 - each set is visually distinguishable group
 - extent: whole view

- **design choices**
 - how many layers, how to distinguish?
 - encode with different, nonoverlapping channels
 - two layers achievable, three with careful design
 - small static set, or dynamic from many possible?
Static visual layering

• foreground layer: roads
 – hue, size distinguishing main from minor
 – high luminance contrast from background
• background layer: regions
 – desaturated colors for water, parks, land areas
• user can selectively focus attention
• “get it right in black and white”
 – check luminance contrast with greyscale view

Superimposing limits

• few layers, but many lines
 – up to a few dozen
 – but not hundreds

• superimpose vs juxtapose: empirical study
 – superimposed for local, multiple for global
 – tasks
 • local: maximum, global: slope, discrimination
 – same screen space for all multiples vs single superimposed

Idiom: **Trellis plots**

- superimpose within same frame
- color code by year
Dynamic visual layering

- interactive, from selection
 - lightweight: click
 - very lightweight: hover

- ex: 1-hop neighbors

Dynamic visual layering

• one-hop neighbour highlighting demos: click vs hover

Further reading

 – Chap 12: Facet Into Multiple Views

Outline

• **Session 1 10-11:30am**
 Data Visualization Pitfalls to Avoid
 – Introduction
 – Color
 – Space: 2D vs 3D

• **Session 2 12:30-3pm**
 Visualization Analysis & Design, In More Depth
 – Marks and Channels, Perception
 – Arrange Tables
 – Arrange Spatial Data
 – Arrange Networks
 – Manipulate: Change, Select, Navigate
 – Facet: Juxtapose, Partition, Superimpose
 – Reduce: Filter, Aggregate

http://www.cs.ubc.ca/~tmm/talks.html#vad17can-aft
Reduce items and attributes

• reduce/increase: inverses
• filter
 – pro: straightforward and intuitive
 • to understand and compute
 – con: out of sight, out of mind
• aggregation
 – pro: inform about whole set
 – con: difficult to avoid losing signal
• not mutually exclusive
 – combine filter, aggregate
 – combine reduce, change, facet

Reducing Items and Attributes

Filter

Items

Attributes

Aggregate

Items

Attributes
Idiom: **dynamic filtering**

- item filtering
- browse through tightly coupled interaction
 – alternative to queries that might return far too many or too few

Idiom: histogram

- static item aggregation
- task: find distribution
- data: table
- derived data
 - new table: keys are bins, values are counts
- bin size crucial
 - pattern can change dramatically depending on discretization
 - opportunity for interaction: control bin size on the fly
Continuous scatterplot

- static item aggregation
- data: table
- derived data: table
 - key attrs x,y for pixels
 - quant attrib: overplot density
- dense space-filling 2D matrix
- color: sequential categorical hue + ordered luminance colormap

Idiom: scented widgets

• augmented widgets show information scent
 – cues to show whether value in drilling down further vs looking elsewhere

• concise use of space: histogram on slider
Scented histogram bisliders: detailed

Idiom: **cross filtering**

- item filtering
- coordinated views/controls combined
 - all scented histogram bisliders update when any ranges change

System: **Crossfilter**

[http://square.github.io/crossfilter/]
Idiom: **boxplot**

- static item aggregation
- task: find distribution
- data: table
- derived data
 - 5 quant attribs
 - median: central line
 - lower and upper quartile: boxes
 - lower upper fences: whiskers
 - values beyond which items are outliers
 - outliers beyond fence cutoffs explicitly shown

[40 years of boxplots. Wickham and Stryjewski. 2012. had.co.nz]
Spatial aggregation

• MAUP: Modifiable Areal Unit Problem
 – gerrymandering (manipulating voting district boundaries) is only one example!
 – zone effects

 ![Image](http://www.e-education.psu.edu/geog486/l4_p7.html, Fig 4.cg.6)

 – scale effects

 ![Image](https://blog.cartographica.com/blog/2011/5/19/the-modifiable-areal-unit-problem-in-gis.html)
Further reading

 – Chap 13: Reduce Items and Attributes

More Information

- this talk
 http://www.cs.ubc.ca/~tmm/talks.html#vad17can-aft

- book page (including tutorial lecture slides)
 http://www.cs.ubc.ca/~tmm/vadbook
 – 20% promo code for book+ebook combo: HVN17

 – illustrations: Eamonn Maguire

- papers, videos, software, talks, courses
 http://www.cs.ubc.ca/group/infovis
 http://www.cs.ubc.ca/~tmm

Visualization Analysis and Design.