Why is validation difficult?
• different ways to get it wrong at each level
• different ways to get it wrong at each level

Analysis: Analyze, Query
• analyze
 • consume
 • discover vs present
 • do not explore vs explain
 • enjoy
 • annotate, record, derive
• query
 • how much data matters?
 • one, some, all
 • independent choices
 • analyze, query, search

Derive: Crucial Design Choice
• don’t just draw what you give!
 • decide what the right thing to show is
 • create it with a series of transformations from the original dataset
draw three
• one of the four major strategies for handling complexity

How to encode: Arrange space, map channels

• marks
 • aspect ratio
 • shape
 • color
 • size
 • orientation
 • trajectory
 • temporal
 • motion
 • visual encoding
 • positional appearance
 • color
 • size
 • animation

Definitions: Marks and channels

Dataset Types
• Table
• Networks

Types: Datasets and data
• Spatial
• List

Analysis example: Derive one attribute
• Strahler number (resilient metric for trees/networks)
 • derived quantitative attribute
 • draw top 5K of 500K for good data
• derive visualization techniques based on the derived attributes

Why analyze?
• imposes a structure on huge design space
 • scaffold to help you think
 • critical for new form

Derive: Crucial Design Choice
• don’t just draw what you’re given!
 • decide what the right thing to show is
 • create it with a series of transformations from the original dataset
draw three
• one of the four major strategies for handling complexity

How to encode: Arrange space, map channels

• marks
 • aspect ratio
 • shape
 • color
 • size
 • orientation
 • trajectory
 • temporal
 • motion
 • visual encoding
 • positional appearance
 • color
 • size
 • animation

Definitions: Marks and channels

Dataset Types
• Table
• Networks

Types: Datasets and data
• Spatial
• List

Analysis example: Derive one attribute
• Strahler number (resilient metric for trees/networks)
 • derived quantitative attribute
 • draw top 5K of 500K for good data
• derive visualization techniques based on the derived attributes

Why analyze?
• imposes a structure on huge design space
 • scaffold to help you think
 • critical for new form

Derive: Crucial Design Choice
• don’t just draw what you’re given!
 • decide what the right thing to show is
 • create it with a series of transformations from the original dataset
draw three
• one of the four major strategies for handling complexity

How to encode: Arrange space, map channels

• marks
 • aspect ratio
 • shape
 • color
 • size
 • orientation
 • trajectory
 • temporal
 • motion
 • visual encoding
 • positional appearance
 • color
 • size
 • animation

Definitions: Marks and channels

Dataset Types
• Table
• Networks

Types: Datasets and data
• Spatial
• List

Analysis example: Derive one attribute
• Strahler number (resilient metric for trees/networks)
 • derived quantitative attribute
 • draw top 5K of 500K for good data
• derive visualization techniques based on the derived attributes

Why analyze?
• imposes a structure on huge design space
 • scaffold to help you think
 • critical for new form

Derive: Crucial Design Choice
• don’t just draw what you’re given!
 • decide what the right thing to show is
 • create it with a series of transformations from the original dataset
draw three
• one of the four major strategies for handling complexity

How to encode: Arrange space, map channels

• marks
 • aspect ratio
 • shape
 • color
 • size
 • orientation
 • trajectory
 • temporal
 • motion
 • visual encoding
 • positional appearance
 • color
 • size
 • animation

Definitions: Marks and channels

Dataset Types
• Table
• Networks

Types: Datasets and data
• Spatial
• List

Analysis example: Derive one attribute
• Strahler number (resilient metric for trees/networks)
 • derived quantitative attribute
 • draw top 5K of 500K for good data
• derive visualization techniques based on the derived attributes

Why analyze?
• imposes a structure on huge design space
 • scaffold to help you think
 • critical for new form

Derive: Crucial Design Choice
• don’t just draw what you’re given!
 • decide what the right thing to show is
 • create it with a series of transformations from the original dataset
draw three
• one of the four major strategies for handling complexity

How to encode: Arrange space, map channels

• marks
 • aspect ratio
 • shape
 • color
 • size
 • orientation
 • trajectory
 • temporal
 • motion
 • visual encoding
 • positional appearance
 • color
 • size
 • animation

Definitions: Marks and channels

Dataset Types
• Table
• Networks

Types: Datasets and data
• Spatial
• List

Analysis example: Derive one attribute
• Strahler number (resilient metric for trees/networks)
 • derived quantitative attribute
 • draw top 5K of 500K for good data
• derive visualization techniques based on the derived attributes

Why analyze?
• imposes a structure on huge design space
 • scaffold to help you think
 • critical for new form

Derive: Crucial Design Choice
• don’t just draw what you’re given!
 • decide what the right thing to show is
 • create it with a series of transformations from the original dataset
draw three
• one of the four major strategies for handling complexity

How to encode: Arrange space, map channels

• marks
 • aspect ratio
 • shape
 • color
 • size
 • orientation
 • trajectory
 • temporal
 • motion
 • visual encoding
 • positional appearance
 • color
 • size
 • animation

Definitions: Marks and channels

Dataset Types
• Table
• Networks

Types: Datasets and data
• Spatial
• List

Analysis example: Derive one attribute
• Strahler number (resilient metric for trees/networks)
 • derived quantitative attribute
 • draw top 5K of 500K for good data
• derive visualization techniques based on the derived attributes

Why analyze?
• imposes a structure on huge design space
 • scaffold to help you think
 • critical for new form

Derive: Crucial Design Choice
• don’t just draw what you’re given!
 • decide what the right thing to show is
 • create it with a series of transformations from the original dataset
draw three
• one of the four major strategies for handling complexity

How to encode: Arrange space, map channels

• marks
 • aspect ratio
 • shape
 • color
 • size
 • orientation
 • trajectory
 • temporal
 • motion
 • visual encoding
 • positional appearance
 • color
 • size
 • animation

Definitions: Marks and channels

Dataset Types
• Table
• Networks

Types: Datasets and data
• Spatial
• List

Analysis example: Derive one attribute
• Strahler number (resilient metric for trees/networks)
 • derived quantitative attribute
 • draw top 5K of 500K for good data
• derive visualization techniques based on the derived attributes

Why is validation difficult?
• different ways to get it wrong at each level

Analysis: Analyze, Query
• analyze
 • consume
 • discover vs present
 • do not explore vs explain
 • enjoy
 • annotate, record, derive
• query
 • how much data matters?
 • one, some, all
 • independent choices
 • analyze, query, search
Partitioning: Recursive subdivision

- split by neighborhood
- then by type
- then time
 - years as rows
 - months as columns
- color by price

- neighborhood patterns
 - where it’s expensive
 - where you pay much more for detached type

Reducing items and attributes

- reduce/increase inverses
- filter
 - pro: straightforward and intuitive
 - con: out of sight, out of mind
 - aggregation
 - pro: inform about whole set
 - con: difficult to avoid losing signal
- not mutually exclusive
 - combine filter, aggregate
 - combine reduce, facet, change, derive

Idiom: boxplot

- static item aggregation
- task: find distribution
 - data: table
 - derived data
 - 5 number summary
 - lower and upper quartile boxes
 - lower and upper fences
 - outliers beyond fence cutoffs explicitly shown

More Information

- this talk
 http://www.cs.ubc.ca/~tmm/talks.html#vad16pacvis
- book page (including tutorial lecture slides)
 http://www.cs.ubc.ca/group/infovis
 - 20% promo code for book+ebook combo: HIVE20
- illustrations: Eamonn Maguire
- papers, videos, software, talks, full courses
 http://www.cs.ubc.ca/~tmm