Visualization Analysis & Design

Tamara Munzner
Department of Computer Science
University of British Columbia

UBC STAT 545A Guest Lecture
October 20 2016, Vancouver BC

http://www.cs.ubc.ca/~tmm/talks.html#vad16bryan
Why have a human in the loop?

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

Visualization is suitable when there is a need to augment human capabilities rather than replace people with computational decision-making methods.

• don’t need vis when fully automatic solution exists and is trusted
• many analysis problems ill-specified
 – don’t know exactly what questions to ask in advance
• possibilities
 – long-term use for end users (e.g. exploratory analysis of scientific data)
 – presentation of known results
 – stepping stone to better understanding of requirements before developing models
 – help developers of automatic solution refine/debug, determine parameters
 – help end users of automatic solutions verify, build trust
Why use an external representation?

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

• external representation: replace cognition with perception

Why represent all the data?

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

- summaries lose information, details matter
 - confirm expected and find unexpected patterns
 - assess validity of statistical model

Anscombe’s Quartet

<table>
<thead>
<tr>
<th>Identical statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>x mean</td>
</tr>
<tr>
<td>x variance</td>
</tr>
<tr>
<td>y mean</td>
</tr>
<tr>
<td>y variance</td>
</tr>
<tr>
<td>x/y correlation</td>
</tr>
</tbody>
</table>
Why analyze?

• imposes structure on huge design space
 – scaffold to help you think systematically about choices
 – analyzing existing as stepping stone to designing new
 – most possibilities ineffective for particular task/data combination

Analysis framework: Four levels, three questions

- **domain** situation
 - who are the target users?

- **abstraction**
 - translate from specifics of domain to vocabulary of vis

- **what** is shown? **data abstraction**
 - often don’t just draw what you’re given: transform to new form

- **why** is the user looking at it? **task abstraction**

- **idiom**

- **how** is it shown?
 - visual encoding idiom: how to draw
 - interaction idiom: how to manipulate

- **algorithm**
 - efficient computation

Why is validation difficult?

• different ways to get it wrong at each level

- **Domain situation**
 - You misunderstood their needs

- **Data/task abstraction**
 - You’re showing them the wrong thing

- **Visual encoding/interaction idiom**
 - The way you show it doesn’t work

- **Algorithm**
 - Your code is too slow
Why is validation difficult?

- solution: use methods from different fields at each level

- **Domain situation**
 - Observe target users using existing tools

- **Data/task abstraction**
 - **Visual encoding/interaction idiom**
 - Justify design with respect to alternatives
 - **Algorithm**
 - Measure system time/memory
 - Analyze computational complexity
 - Analyze results qualitatively
 - Measure human time with lab experiment (lab study)

- **Anthropology/ethnography**
 - Observe target users after deployment (field study)
 - Measure adoption

Datasets

- Data Types
 - Items
 - Attributes
 - Links
 - Positions
 - Grids

- Data and Dataset Types
 - Tables
 - Items
 - Attributes
 - Networks & Trees
 - Items (nodes)
 - Grids
 - Positions
 - Fields
 - Attributes
 - Geometry
 - Items
 - Positions
 - Clusters, Sets, Lists
 - Items

Attributes

- Attribute Types
 - Categorical
 - +
 - ●
 - □
 - ▲
 - Ordered
 - Ordinal
 - ↑
 - Quantitative

Ordering Direction

- Sequential
- Diverging
- Cyclic

Geometry (Spatial)

Dataset Availability

- Static
- Dynamic
Three major datatypes

Dataset Types

- Tables
 - Attributes (columns)
 - Items (rows)
 - Cell containing value

- Networks
 - Link
 - Node (item)

- Spatial
 - Fields (Continuous)
 - Geometry (Spatial)

- Multidimensional Table
 - Key 1
 - Key 2
 - Attributes

- Trees
 - Attributes (columns)
 - Value in cell

- Spatial
 - Grid of positions
 - Cell
 - Attributes (columns)
 - Value in cell

- Position

• visualization vs computer graphics
 – geometry is design decision
Types: Datasets and data

- **Dataset Types**
 - Tables
 - Networks
 - Spatial
 - Fields (Continuous)
 - Geometry (Spatial)

- **Attribute Types**
 - Categorical
 - Ordered
 - Ordinal
 - Quantitative
• \{action, target\} pairs
 – discover distribution
 – compare trends
 – locate outliers
 – browse topology
Actions: Analyze, Query

- **analyze**
 - consume
 - discover vs present
 - aka explore vs explain
 - enjoy
 - aka casual, social
 - produce
 - annotate, record, derive

- **query**
 - how much data matters?
 - one, some, all

- **independent choices**
 - analyze, query, (search)
Derive

• don’t just draw what you’re given!
 – decide what the right thing to show is
 – create it with a series of transformations from the original dataset
 – draw that

• one of the four major strategies for handling complexity

Original Data

![Original Data Graph]

Derived Data

![Derived Data Graph]

\[\text{trade balance} = \text{exports} - \text{imports} \]
Analysis example: Derive one attribute

- **Strahler number**
 - centrality metric for trees/networks
 - derived quantitative attribute
 - draw top 5K of 500K for good skeleton

Task 1

- **What?**
 - In Tree
 - Out Quantitative attribute on nodes

- **Why?**
 - Derive

Task 2

- **What?**
 - In Tree
 - Quantitative attribute on nodes

- **Why?**
 - Summarize

- **How?**
 - Reduce
 - Filter

Out Filtered Tree
Removed unimportant parts

In Tree +
Out Quantitative attribute on nodes

In Tree
Out Filtered Tree
Targets

- **All Data**
 - Trends
 - Outliers
 - Features

- **Attributes**
 - One
 - Distribution
 - Extremes
 - Many
 - Dependency
 - Correlation
 - Similarity

- **Network Data**
 - Topology
 - Paths

- **Spatial Data**
 - Shape
How?

<table>
<thead>
<tr>
<th>Encode</th>
<th>Manipulate</th>
<th>Facet</th>
<th>Reduce</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arrange</td>
<td>Map</td>
<td>Change</td>
<td>Filter</td>
</tr>
<tr>
<td>Express</td>
<td>from categorical and ordered attributes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Separate</td>
<td>Color</td>
<td>Juxtapose</td>
<td></td>
</tr>
<tr>
<td>Order</td>
<td>Hue, Saturation, Luminance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Align</td>
<td>Size, Angle, Curvature, ...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use</td>
<td>Shape</td>
<td>Select</td>
<td>Aggregate</td>
</tr>
<tr>
<td></td>
<td>+, ●, ■, ▲</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Motion</td>
<td>Partition</td>
<td>Embed</td>
</tr>
<tr>
<td></td>
<td>Direction, Rate, Frequency, ...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What?

- Arrange
- Express
- Separate
- Order
- Align
- Use

Why?

- Encode
- Arrange
- Express
- Separate
- Order
- Align
- Use

How?

- Map from categorical and ordered attributes
- Color: Hue, Saturation, Luminance
- Size, Angle, Curvature, ...
- Shape: +, ●, ■, ▲
- Motion: Direction, Rate, Frequency, ...

- Change
- Juxtapose
- Select
- Partition
- Navigate
- Superimpose
- Embed
How to encode: Arrange space, map channels

Encode

Arrange

- Express
- Order
- Use

Separate

Align

Map

from categorical and ordered attributes

- Color
 - Hue
 - Saturation
 - Luminance

- Size, Angle, Curvature, ...

- Shape

- Motion
 - Direction, Rate, Frequency, ...

En code
A rrange
Exp r ess
S ep a ra te
O r der A li g n
U se
M ap
C ol or
M ot ion
S i ze , A ng le , C ur va tu r e , ...
Hue S at ur at ion L umi na nc e
S h a pe
D i re c tion, R a te , F re quen cy , ...
F r om c a te gor i cal a nd o r der ed a t t r ibu t es
Encoding visually

• analyze idiom structure
Definitions: Marks and channels

• marks
 – geometric primitives

 • Points
 • Lines
 • Areas

• channels
 – control appearance of marks

 • Position
 ➔ Horizontal
 ➔ Vertical
 ➔ Both

 • Color

 • Shape

 • Tilt

 • Size
 ➔ Length
 ➔ Area
 ➔ Volume
Encoding visually with marks and channels

• analyze idiom structure
 – as combination of marks and channels

1: vertical position
mark: line

2: vertical position, horizontal position
mark: point

3: vertical position, horizontal position, color hue
mark: point

4: vertical position, horizontal position, color hue, size (area)
mark: point
Channels

- Position on common scale
- Position on unaligned scale
- Length (1D size)
- Tilt/angle
- Area (2D size)
- Depth (3D position)
- Color luminance
- Color saturation
- Curvature
- Volume (3D size)

Spatial region
Color hue
Motion
Shape
Channels: Matching Types

Magnitude Channels: Ordered Attributes

- Position on common scale
- Position on unaligned scale
- Length (1D size)
- Tilt/angle
- Area (2D size)
- Depth (3D position)
- Color luminance
- Color saturation
- Curvature
- Volume (3D size)

Identity Channels: Categorical Attributes

- Spatial region
- Color hue
- Motion
- Shape

- expressiveness principle
 - match channel and data characteristics
Channels: Rankings

Magnitude Channels: Ordered Attributes
- Position on common scale
- Position on unaligned scale
- Length (1D size)
- Tilt/angle
- Area (2D size)
- Depth (3D position)
- Color luminance
- Color saturation
- Curvature
- Volume (3D size)

Identity Channels: Categorical Attributes
- Spatial region
- Color hue
- Motion
- Shape

- expressiveness principle
 - match channel and data characteristics
- effectiveness principle
 - encode most important attributes with highest ranked channels
Accuracy: Fundamental Theory

Steven’s Psychophysical Power Law: $S = I^N$
Accuracy: Vis experiments

Separability vs. Integrality

<table>
<thead>
<tr>
<th>Position</th>
<th>Size</th>
<th>Width</th>
<th>Red</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ Hue (Color)</td>
<td>+ Hue (Color)</td>
<td>+ Height</td>
<td>+ Green</td>
</tr>
</tbody>
</table>

- **Fully separable**
 - 2 groups each

- **Some interference**
 - 2 groups each

- **Some/significant interference**
 - 3 groups total: integral area

- **Major interference**
 - 4 groups total: integral hue
Grouping

• containment
• connection

Marks as Links

→ Containment

→ Connection

Identity Channels: Categorical Attributes

• proximity
 – same spatial region
• similarity
 – same values as other categorical channels
How to encode: Arrange position and region

Encode

Arrange
- Express
- Order
- Use

Separate
- Align

Map
- from categorical and ordered attributes
- Color
 - Hue
 - Saturation
 - Luminance
- Size, Angle, Curvature, ...
- Shape
- Motion
 - Direction, Rate, Frequency, ...

Why?
How?
What?
Arrange tables

- Express Values
- Separate, Order, Align Regions
 - Separate
 - Order
 - Align

- Axis Orientation
 - Rectilinear
 - Parallel
 - Radial

- Layout Density
 - Dense
 - Space-Filling

- 1 Key
 - List
- 2 Keys
 - Matrix
- 3 Keys
 - Volume
- Many Keys
 - Recursive Subdivision
Idioms: dot chart, line chart

• one key, one value
 – data
 • 2 quant attribs
 – mark: points
 • dot plot: + line connection marks between them
 – channels
 • aligned lengths to express quant value
 • separated and ordered by key attrib into horizontal regions
 – task
 • find trend
 – connection marks emphasize ordering of items along key axis by explicitly showing relationship between one item and the next
Choosing bar vs line charts

- depends on type of key attrib
 - bar charts if categorical
 - line charts if ordered
- do not use line charts for categorical key attribs
 - violates expressiveness principle
 - implication of trend so strong that it overrides semantics!
 - “The more male a person is, the taller he/she is”

Idiom: **glyphmaps**

- rectilinear good for linear vs nonlinear trends

- radial good for cyclic patterns

Idiom: **heatmap**

- **two keys, one value**
 - **data**
 - 2 categ attribs (gene, experimental condition)
 - 1 quant attrib (expression levels)
 - **marks: area**
 - separate and align in 2D matrix
 - indexed by 2 categorical attributes
 - **channels**
 - color by quant attrib
 - (ordered diverging colormap)
 - **task**
 - find clusters, outliers
 - **scalability**
 - 1M items, 100s of categ levels, ~10 quant attrib levels
Arrange spatial data

Use Given

Geometry

- Geographic
- Other Derived

Spatial Fields

- Scalar Fields (one value per cell)
 - Isocontours
 - Direct Volume Rendering

- Vector and Tensor Fields (many values per cell)
 - Flow Glyphs (local)
 - Geometric (sparse seeds)
 - Textures (dense seeds)
 - Features (globally derived)
Idiom: choropleth map

- use given spatial data
 - when central task is understanding spatial relationships
- data
 - geographic geometry
 - table with 1 quant attribute per region
- encoding
 - use given geometry for area mark boundaries
 - sequential segmented colormaps

http://bl.ocks.org/mbostock/4060606
Population maps trickiness

- beware!

[https://xkcd.com/1138]
Idiom: **topographic map**

- **data**
 - geographic geometry
 - scalar spatial field
 - 1 quant attribute per grid cell
- **derived data**
 - isoline geometry
 - isocontours computed for specific levels of scalar values
Idioms: **isosurfaces, direct volume rendering**

- **data**
 - scalar spatial field
 - 1 quant attribute per grid cell
- **task**
 - shape understanding, spatial relationships
- **isosurface**
 - derived data: isocontours computed for specific levels of scalar values
- **direct volume rendering**
 - transfer function maps scalar values to color, opacity

Idiom: similarity-clustered streamlines

- data
 - 3D vector field
- derived data (from field)
 - streamlines: trajectory particle will follow
- derived data (per streamline)
 - curvature, torsion, tortuosity
 - signature: complex weighted combination
 - compute cluster hierarchy across all signatures
 - encode: color and opacity by cluster
- tasks
 - find features, query shape
- scalability
 - millions of samples, hundreds of streamlines

Arrange networks and trees

- **Node–Link Diagrams**
 - Connection Marks
 - ![Node–Link Diagram](image)

- **Adjacency Matrix**
 - Derived Table
 - ![Adjacency Matrix](image)

- **Enclosure**
 - Containment Marks
 - ![Enclosure](image)
Idiom: **force-directed placement**

- visual encoding
 - link connection marks, node point marks
- considerations
 - spatial position: no meaning directly encoded
 - left free to minimize crossings
 - proximity semantics?
 - sometimes meaningful
 - sometimes arbitrary, artifact of layout algorithm
 - tension with length
 - long edges more visually salient than short
- tasks
 - explore topology; locate paths, clusters
- scalability
 - node/edge density $E < 4N$

[Image: mbostock.github.com/d3/ex/force.html]
Idiom: **adjacency matrix view**

- **data**: network
 - transform into same data/encoding as heatmap
- **derived data**: table from network
 - 1 quant attrib
 - weighted edge between nodes
 - 2 categ attribs: node list x 2
- **visual encoding**
 - cell shows presence/absence of edge
- **scalability**
 - 1K nodes, 1M edges

![Diagram of adjacency matrix view](image)

Figure 7.5: Comparing matrix and node-link views of a five-node network.
(a) Matrix view. (b) Node-link view. From [Henry et al. 07], Figure 3b and 3a.
(Permission needed.)

Matrix views of networks can achieve very high information density, up to a limit of one thousand nodes and one million edges, just like cluster heatmaps and all other matrix views that uses small area marks.

Technique
network matrix view
Data Types
network
Derived Data
| table: network nodes as keys, link status between two nodes as values |

View Comp.
space: area marks in 2D matrix alignment

Scalability
nodes: 1K
edges: 1M

7.1.3.3 Multiple Keys: Partition and Subdivide
When a dataset has only one key, then it is straightforward to use that key to separate into one region.
Connection vs. adjacency comparison

• adjacency matrix strengths
 – predictability, scalability, supports reordering
 – some topology tasks trainable

• node-link diagram strengths
 – topology understanding, path tracing
 – intuitive, no training needed

• empirical study
 – node-link best for small networks
 – matrix best for large networks
 • if tasks don’t involve topological structure!

Idiom: **radial node-link tree**

- data
 - tree
- encoding
 - link connection marks
 - point node marks
 - radial axis orientation
 - angular proximity: siblings
 - distance from center: depth in tree
- tasks
 - understanding topology, following paths
- scalability
 - 1K - 10K nodes

Idiom: treemap

• data
 – tree
 – 1 quant attrib at leaf nodes

• encoding
 – area containment marks for hierarchical structure
 – rectilinear orientation
 – size encodes quant attrib

• tasks
 – query attribute at leaf nodes

• scalability
 – 1M leaf nodes

Connection vs. containment comparison

• marks as links (vs. nodes)
 – common case in network drawing
 – 1D case: connection
 • ex: all node-link diagrams
 • emphasizes topology, path tracing
 • networks and trees
 – 2D case: containment
 • ex: all treemap variants
 • emphasizes attribute values at leaves (size coding)
 • only trees

How to encode: Mapping color

Encode

→ Arrange
 → Express
 → Order
 → Use
→ Separate
→ Align

→ Map
 from categorical and ordered attributes
 → Color
 → Hue
 → Saturation
 → Luminance
 → Size, Angle, Curvature, ...
 → Shape
 Direction, Rate, Frequency, ...
→ Use

Why?

How?

What?
Color: Luminance, saturation, hue

• 3 channels
 – identity for categorical
 • hue
 – magnitude for ordered
 • luminance
 • saturation

• RGB: poor for encoding
• HSL: better, but beware
 – lightness ≠ luminance
Categorical color: Discriminability constraints

- noncontiguous small regions of color: only 6-12 bins

[Cinteny: flexible analysis and visualization of synteny and genome rearrangements in multiple organisms. Sinha and Meller. BMC Bioinformatics, 8:82, 2007.]
Ordered color: Rainbow is poor default

• problems
 – perceptually unordered
 – perceptually nonlinear

• benefits
 – fine-grained structure visible and nameable

Ordered color: Rainbow is poor default

• problems
 – perceptually unordered
 – perceptually nonlinear

• benefits
 – fine-grained structure visible and nameable

• alternatives
 – large-scale structure: fewer hues

Ordered color: Rainbow is poor default

• problems
 – perceptually unordered
 – perceptually nonlinear

• benefits
 – fine-grained structure visible and nameable

• alternatives
 – large-scale structure: fewer hues
 – fine structure: multiple hues with monotonically increasing luminance [eg viridis R/python]
Viridis

- colorful, perceptually uniform, colorblind-safe, monotonically increasing luminance

https://cran.r-project.org/web/packages/viridis/vignettes/intro-to-viridis.html
Ordered color: Rainbow is poor default

• problems
 – perceptually unordered
 – perceptually nonlinear

• benefits
 – fine-grained structure visible and nameable

• alternatives
 – large-scale structure: fewer hues
 – fine structure: multiple hues with monotonically increasing luminance [e.g., viridis R/python]
 – segmented rainbows for binned or categorical

How?

<table>
<thead>
<tr>
<th>Encode</th>
<th>Manipulate</th>
<th>Facet</th>
<th>Reduce</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arrange</td>
<td>Change</td>
<td>Juxtapose</td>
<td>Filter</td>
</tr>
<tr>
<td>Express</td>
<td>Hue</td>
<td>Partition</td>
<td>Aggregate</td>
</tr>
<tr>
<td>Separate</td>
<td>Saturation</td>
<td>Superimpose</td>
<td>Embed</td>
</tr>
<tr>
<td>Order</td>
<td>Luminance</td>
<td>Direction, Rate, Frequency, ...</td>
<td>Embed</td>
</tr>
<tr>
<td>Align</td>
<td>Size, Angle, Curvature, ...</td>
<td>Superimpose</td>
<td>Embed</td>
</tr>
<tr>
<td>Use</td>
<td>Shape</td>
<td>Navigator</td>
<td>Embed</td>
</tr>
</tbody>
</table>

Map
- from categorical and ordered attributes
- **Color**
 - **Hue**
 - **Saturation**
 - **Luminance**
- **Size, Angle, Curvature, ...**
- **Shape**
- **Motion**
 - Direction, Rate, Frequency, ...

What?

Why?

How?
How to handle complexity: 3 more strategies

Manipulate

- Change
 - \[\text{data} \]

- Select
 - \[\text{select} \]

- Navigate
 - \[\text{navigate} \]

Facet

- Juxtapose
 - \[\text{data} \]

- Partition
 - \[\text{partition} \]

- Superimpose
 - \[\text{superimpos} \]

Reduce

- Filter
 - \[\text{filter} \]

- Aggregate
 - \[\text{aggregate} \]

- Embed
 - \[\text{embed} \]

Derive

- \[\text{derive} \]

- change view over time
- facet across multiple views
- reduce items/attributes within single view
- derive new data to show within view
Data Types
- Items

Data and D
- Tables
- Items
- Attributes

Dataset Types
- Tables
- Attribute (rows)

Search
- Multidimensional
- Location known
- Location unknown

Query
- Geospatial
- Identify

Encode
- Arrange
 - Express
 - Separate
- Map
 - from categorical and ordered attributes
 - Color
 - Hue
 - Saturation
 - Luminance
 - Size, Angle, Curvature, ...
 - Shape
 - + • ◇
 - Motion
 - Direction, Rate, Frequency, ...

All Data
- Trends
- Outliers
- Features

Manipulate
- Change
- Juxtapose
- Filter

Facet
- Select
- Partition

Reduce
- Aggregate
- Superimpose
- Embed

Actions

Targets

Why?

domain

abstraction What?

idiom How?

algorithm Why?
More Information

• this talk
 http://www.cs.ubc.ca/~tmm/talks.html#vad16bryan

• book page (including tutorial lecture slides)
 http://www.cs.ubc.ca/~tmm/vadbook
 – 20% promo code for book+ebook combo: HVN17
 – illustrations: Eamonn Maguire

• papers, videos, software, talks, full courses
 http://www.cs.ubc.ca/group/infovis
 http://www.cs.ubc.ca/~tmm

• grad vis course Jan ’17: CPSC 547, Tue/Thu 3:30
 - students from outside CS are welcome
 http://www.cs.ubc.ca/~tmm/courses/547-17

@tamaramunzner