Visualization Analysis & Design

Tamara Munzner
Department of Computer Science
University of British Columbia
University of Washington, Data Science Seminar
September 30 2015, Seattle WA
http://www.cs.ubc.ca/~tmm/talks.html#vad15uw

Visualization Analysis & Design
Tamara Munzner
Department of Computer Science
University of British Columbia
University of Washington, Data Science Seminar
September 30 2015, Seattle WA

Analysis framework: Four levels, three questions
- domain situation
 - who are the target users?
- abstraction
 - translation from specific to vocabulary of vis
 - what is shown in data abstraction
 - what don’t you draw when you give transforms to new form
- why is the user looking at it? task abstraction
 - idiom
 - how is it shown?
 - visual encoding idiom: how to draw
 - interaction idiom: how to manipulate
 - algorithm
 - efficient computation

Types: Datasets and data
- Dataset Types
 - Tables
 - Networks
 - Fields (Continuous)
 - Geometry (Spatial)
- Attribute Types
 - Categorical
 - Ordered
 - Ordinal
 - Quantitative

Actions II: Search
- what does user know?
 - target, location
- how much of the data matters?
 - one, some, all
- analyze, search, query
 - independent choices for each

Actions III: Query
- what does user know?
 - target, location
- how much of the data matters?
 - one, some, all
- analyze, search, query
 - independent choices for each

Factors: Why analyze?
- imposes a structure on huge design space
 - scaffold to help you think systematically about choices
- reduces cognitive load
 - saves time/memos
- consumes time/memos
- produces
 - annotate, record
 - derive
 - crucial design choice

Why use an external representation?
- external representation: replace cognition with perception
- computer-based visualization provides visual representations of datasets designed to help people carry out tasks more effectively.

Defining visualization (vis)
Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

Why?...

Why represent all the data?
Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

- summaries lose information, details matter
- confirm expected and find unexpected patterns
- assess validity of statistical model

Anscombe’s Quartet

- x mean
- y mean
- x variance
- y variance
- x mean
- y variance
- x correlation
- y correlation

Validation methods from different fields for each level
anthropology/ethnography
design
computer science
cognitive psychology

Dataset Availability
Static Dynamic

How?
Encode Manipulate Facet Reduce

why have a human in the loop?
- computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.
- don’t need visual if full automatic solution exists and is trusted
- many analysis problems ill-specified
- don’t know exactly what questions to ask in advance
- possibilities
 - long-term use for end users (e.g. exploratory analysis of scientific data)
 - preservation of known results
 - stepping stones for better understanding of requirements before developing models
 - help developers of automatic solution rethinking; determine parameters
 - help end-users of automatic solution verify build-truth
How to encode: Arrange space, map channels

Encoding visually
- analyze idiom structure

Definitions: Marks and channels
- marks
 - geometric primitives
- channels
 - visual appearance of marks

Channels: Expressiveness types and effectiveness rankings

Idiom: Linked highlighting
- see how regions contiguously in one view are distributed within another
 - powerful and pervasive interaction idiom
- encoding different
 - multiform
- data all-shared

Idiom: Animated transitions
- smooth transition from one state to another
 - alternative to jump cuts
 - support for item tracking when amount of change is limited
- example: multilevel matrix views
 - scope of what is shown narrows down
- either blocks expand down to increasingly aggregated representations

Idiom: bird’s-eye maps
- encoding: same
- data: subsets shared
- navigation: shared
 - bidirectional linking
- differences: viewpoints
 - overview–detail

Facet
- Partition
 - Superimpose
 - Share Navigation
 - Share Encoding: Same/Different
 - Linked Highlighting
 - Data: All/Subset/None

Encoding visually with marks and channels
- analyze idiom structure
 - as combination of marks and channels

Channels: Matching Types

Channels: Rankings

How to handle complexity: 3 more strategies

System: EDV

System: Google Maps

System: Cerebral

Definition: Marks and channels
- marks
- channels
- shared
- encoding: same
- data: subsets shared
- navigation: shared
- bidirectional linking
- differences: viewpoints
- overview–detail

Mark: point
- position
- value
- attributes

Shape
- size
- area
- length
- volume

Color
- spectrum
- hue
- luminance
- saturation

Resources:
Partitioning: Design choice interaction

Coordinate views: Data and Design choice interaction

Partitioning into views

• how to divide data between views
 - encodes associations between what is seen using spatial proximity
 - major implications for how patterns are visible
 - split according to attributes
 - design choices
 - how many splits
 - all the way down: one mark per region?
 - easy enough for more complex structure within region?
 - order in which attributes used to split
 - how many views

• why juxtapose views?
 - benefits: eyes vs memory
 - lower cognitive load to move eyes between 2 views than remembering previous state with single changing view
 - costs: display area, 2 views side by side each have only half the area of one view

FIGURES

Idiom: Dimensionality reduction for documents

• attribute aggregation
 - derive low-dimensional target space from high-dimensional measured space

Idiom: Partitioning: List alignment

• single bar chart with grouped bars
 - split by state into regions
 - compare gdp within each region showing all ages

• small-multiple bar charts
 - split by age into regions
 - compare easy within age, harder across ages

• small-multiple pie charts
 - one pie chart per region
 - compare easy within age, harder across ages

How to handle complexity: 3 more strategies

• reduce what is shown within single view
 - reduce/increase: inverses
 - filter
 - aggregation

Reduce and attributes

• reduce/increase: inverses
 - filter
 - aggregation

• to/whence
 - from/whence

• how many splits
 - all the way down: one mark per region?
 - easy enough for more complex structure within region?
 - order in which attributes used to split
 - how many views

• why juxtapose views?
 - benefits: eyes vs memory
 - lower cognitive load to move eyes between 2 views than remembering previous state with single changing view
 - costs: display area, 2 views side by side each have only half the area of one view

FIGURES

Idiom: More Information

• reduce what is shown
• reduce/increase: inverses
• filter
 - pro: straightforward and intuitive
 - to/whence
 - from/whence

• aggregation
 - pro: infomin about whole set
 - con: difficult to avoid losing signal

• not mutually exclusive
 - combine filter, aggregate

Reduce and attributes

• reduce/increase: inverses
• filter
 - pro: straightforward and intuitive
 - to/whence
 - from/whence

• aggregation
 - pro: infomin about whole set
 - con: difficult to avoid losing signal

• not mutually exclusive
 - combine filter, aggregate

Reduce and attributes

• reduce/increase: inverses
• filter
 - pro: straightforward and intuitive
 - to/whence
 - from/whence

• aggregation
 - pro: infomin about whole set
 - con: difficult to avoid losing signal

• not mutually exclusive
 - combine filter, aggregate

Reduce and attributes

• reduce/increase: inverses
• filter
 - pro: straightforward and intuitive
 - to/whence
 - from/whence

• aggregation
 - pro: infomin about whole set
 - con: difficult to avoid losing signal

• not mutually exclusive
 - combine filter, aggregate