Visualization Analysis & Design

Tamara Munzner
Department of Computer Science
University of British Columbia

Tableau Software
February 20 2015, Seattle WA

http://www.cs.ubc.ca/~tmm/talks.html#vad15tableau
Defining visualization (vis)

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

Why?...
Why have a human in the loop?

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

Visualization is suitable when there is a need to augment human capabilities rather than replace people with computational decision-making methods.

• don’t need vis when fully automatic solution exists and is trusted
• many analysis problems ill-specified
 – don’t know exactly what questions to ask in advance
• possibilities
 – long-term use for end users (e.g. exploratory analysis of scientific data)
 – presentation of known results
 – stepping stone to better understanding of requirements before developing models
 – help developers of automatic solution refine/debug, determine parameters
 – help end users of automatic solutions verify, build trust
Why use an external representation?

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

- external representation: replace cognition with perception

Why represent all the data?

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

• summaries lose information, details matter
 – confirm expected and find unexpected patterns
 – assess validity of statistical model

Anscombe’s Quartet

<table>
<thead>
<tr>
<th>Identical statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>x mean</td>
</tr>
<tr>
<td>x variance</td>
</tr>
<tr>
<td>y mean</td>
</tr>
<tr>
<td>y variance</td>
</tr>
<tr>
<td>x/y correlation</td>
</tr>
</tbody>
</table>
Analysis framework: Four levels, three questions

• **domain** situation
 – who are the target users?

• **abstraction**
 – translate from specifics of domain to vocabulary of vis

• **what** is shown? **data abstraction**

• **why** is the user looking at it? **task abstraction**

• **idiom**
 • **how** is it shown?
 • **visual encoding idiom**: how to draw
 • **interaction idiom**: how to manipulate

• **algorithm**
 – efficient computation

Validation methods from different fields for each level

- **Domain situation**
 - Observe target users using existing tools

- **Data/task abstraction**
 - **Visual encoding/interaction idiom**
 - Justify design with respect to alternatives
 - **Algorithm**
 - Measure system time/memory
 - Analyze computational complexity
 - Analyze results qualitatively
 - Measure human time with lab experiment (lab study)
 - Observe target users after deployment (field study)
 - Measure adoption

- **Anthropology/ethnography**
 - design
 - computer science
 - cognitive psychology

- mismatch: cannot show idiom good with system timings
- mismatch: cannot show abstraction good with lab study
Why analyze?

- imposes a structure on huge design space
 - scaffold to help you think systematically about choices
 - analyzing existing as stepping stone to designing new

Why?

- **Tree**
 - **Actions**
 - Present
 - Locate
 - Identify
 - **Targets**
 - Path between two nodes

How?

- **SpaceTree**
 - Encode
 - Navigate
 - Select
 - Filter
 - Aggregate

- **TreeJuxtaposer**
 - Encode
 - Navigate
 - Select
 - Arrange

Data Types
- **Items**
- **Attributes**
- **Links**
- **Positions**
- **Grids**

Data and Dataset Types
<table>
<thead>
<tr>
<th>Tables</th>
<th>Networks & Trees</th>
<th>Fields</th>
<th>Geometry</th>
<th>Clusters, Sets, Lists</th>
</tr>
</thead>
<tbody>
<tr>
<td>Items</td>
<td>Items (nodes)</td>
<td>Grids</td>
<td>Items</td>
<td>Positions</td>
</tr>
<tr>
<td>Attributes</td>
<td>Links</td>
<td>Positions</td>
<td>Attributes</td>
<td>Positions</td>
</tr>
</tbody>
</table>

Dataset Types
- **Tables**
- **Networks**
- **Fields (Continuous)**
- **Multidimensional Table**
- **Trees**
- **Geometry (Spatial)**

Attribute Types
- **Categorical**
 - + • □ △
- **Ordered**
 - Ordinal
 - + • □ △
- **Quantitative**

Ordering Direction
- **Sequential**
- **Diverging**
- **Cyclic**

Dataset Availability
- **Static**
- **Dynamic**
Dataset and data types

Dataset Types

- Tables
- Networks

Attribute Types

- Categorical
- Ordered
 - Ordinal
 - Quantitative
• \{action, target\} pairs
 – discover distribution
 – compare trends
 – locate outliers
 – browse topology
Actions 1: Analyze

- consume
 - discover vs present
 • classic split
 • aka explore vs explain
 - enjoy
 • newcomer
 • aka casual, social

- produce
 - annotate, record
 - derive
 • crucial design choice
Actions II: Search

• what does user know?
 – target, location

<table>
<thead>
<tr>
<th></th>
<th>Target known</th>
<th>Target unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location known</td>
<td>Lookup</td>
<td>Browse</td>
</tr>
<tr>
<td>Location unknown</td>
<td>Locate</td>
<td>Explore</td>
</tr>
</tbody>
</table>
Actions III: Query

• what does user know?
 – target, location

• how much of the data matters?
 – one, some, all

→ Search

<table>
<thead>
<tr>
<th></th>
<th>Target known</th>
<th>Target unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location known</td>
<td>Lookup</td>
<td>Browse</td>
</tr>
<tr>
<td>Location unknown</td>
<td>Locate</td>
<td>Explore</td>
</tr>
</tbody>
</table>

→ Query

→ Identify

→ Compare

→ Summarize
Targets

- All Data
 - Trends
 - Outliers
 - Features

- Attributes
 - One
 - Distribution
 - Extremes
 - Many
 - Dependency
 - Correlation
 - Similarity

- Network Data
 - Topology
 - Paths

- Spatial Data
 - Shape
How?

Encode

- **Arrange**
 - Express
 - Separate
- **Order**
 - Align
- **Use**
 - ![Map Color](image)
 - ![Map Motion](image)
 - ![Map Size, Angle, Curvature](image)
 - ![Map Shape](image)
 - ![Map Motion](image)

- **Map from categorical and ordered attributes**
 - **Color**
 - Hue
 - Saturation
 - Luminance
 - **Size, Angle, Curvature, ...**
 - **Shape**
 - ![Shape](image)
 - **Motion**
 - Direction, Rate, Frequency, ...

Manipulate

- **Change**
- **Select**
- **Navigate**

Facet

- **Juxtapose**
- **Partition**
- **Superimpose**

Reduce

- **Filter**
- **Aggregate**
- **Embed**

What?
- ![Map Color](image)
- ![Map Motion](image)
- ![Map Size, Angle, Curvature](image)
- ![Map Shape](image)
- ![Map Motion](image)

Why?
- ![Map Color](image)
- ![Map Motion](image)
- ![Map Size, Angle, Curvature](image)
- ![Map Shape](image)
- ![Map Motion](image)

How?
How to encode: Arrange space, map channels

Encode

Arrange
- Express
- Order
- Use

Map
- from **categorical** and **ordered** attributes
 - Color
 - **Hue**
 - **Saturation**
 - **Luminance**
 - **Size, Angle, Curvature, ...**
 - **Shape**
 - + • ■ ▲
 - **Motion**
 - *Direction, Rate, Frequency, ...*
How?

<table>
<thead>
<tr>
<th>Encode</th>
<th>Manipulate</th>
<th>Facet</th>
<th>Reduce</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arrange</td>
<td>Change</td>
<td>Juxtapose</td>
<td>Filter</td>
</tr>
<tr>
<td>Express</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Separate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Order</td>
<td>Select</td>
<td>Partition</td>
<td>Aggregate</td>
</tr>
<tr>
<td>Align</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use</td>
<td>Navigate</td>
<td>Superimpose</td>
<td>Embed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Map</td>
<td>Hue</td>
<td>Direction, Rate, Frequency, ...</td>
<td></td>
</tr>
<tr>
<td>from categorical and ordered attributes</td>
<td>Saturation</td>
<td>Embed</td>
<td></td>
</tr>
<tr>
<td>Color</td>
<td>Luminance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size, Angle, Curvature, ...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shape</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Motion</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Direction, Rate, Frequency, ...
How to handle complexity: 3 more strategies

- **Manipulate**
 - **Change**
 - **Select**
 - **Navigate**

- **Facet**
 - **Juxtapose**
 - **Partition**
 - **Superimpose**

- **Reduce**
 - **Filter**
 - **Aggregate**
 - **Embed**

- **Derive**

+ 1 previous

- change view over time
- facet across multiple views
- reduce items/attributes within single view
- derive new data to show within view
How to handle complexity: 3 more strategies

+ 1 previous

- **Manipulate**
 - Change
 - Select
 - Navigate

- **Facet**
 - Juxtapose
 - Partition
 - Superimpose

- **Reduce**
 - Filter
 - Aggregate
 - Embed

- **Derive**

- • change over time
 - - most obvious & flexible of the 4 strategies
Idiom: **Animated transitions**

- smooth transition from one state to another
 - alternative to jump cuts
 - support for item tracking when amount of change is limited
- example: multilevel matrix views
 - scope of what is shown narrows down
 - middle block stretches to fill space, additional structure appears within
 - other blocks squish down to increasingly aggregated representations

Facet

- Juxtapose

- Partition

- Superimpose

Coordinate Multiple Side By Side Views

- Share Encoding: Same/Different
 - Linked Highlighting

- Share Data: All/Subset/None

- Share Navigation
How to handle complexity: 3 more strategies

- Manipulate
 - Change
 - Select
 - Navigate

- Facet
 - Juxtapose
 - Partition
 - Superimpose

- Reduce
 - Filter
 - Aggregate
 - Embed

- Derive

+ 1 previous

- facet data across multiple views
Idiom: **Linked highlighting**

- see how regions contiguous in one view are distributed within another
 - powerful and pervasive interaction idiom

- encoding: different
 - **multiform**

- data: all shared

Idiom: *bird’s-eye maps*

- encoding: same
- data: subset shared
- navigation: shared
 - bidirectional linking

- differences
 - viewpoint
 - (size)

- **overview-detail**

System: **Google Maps**

Idiom: **Small multiples**

- **encoding**: same
- **data**: none shared
 - different attributes for node colors
 - (same network layout)
- **navigation**: shared

Coordinate views: Design choice interaction

<table>
<thead>
<tr>
<th></th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
</tr>
<tr>
<td>Encoding</td>
<td></td>
</tr>
<tr>
<td>Same</td>
<td>Redundant</td>
</tr>
<tr>
<td>Different</td>
<td>Multiform</td>
</tr>
</tbody>
</table>

• why juxtapose views?
 – benefits: eyes vs memory
 • lower cognitive load to move eyes between 2 views than remembering previous state with single changing view
 – costs: display area, 2 views side by side each have only half the area of one view
Partition into views

• how to divide data between views
 – encodes association between items using spatial proximity
 – major implications for what patterns are visible
 – split according to attributes

• design choices
 – how many splits
 • all the way down: one mark per region?
 • stop earlier, for more complex structure within region?
 – order in which attribs used to split
 – how many views
Partitioning: List alignment

- single bar chart with grouped bars
 - split by state into regions
 - complex glyph within each region showing all ages
 - compare: easy within state, hard across ages

- small-multiple bar charts
 - split by age into regions
 - one chart per region
 - compare: easy within age, harder across states
Partitioning: Recursive subdivision

- split by type
- then by neighborhood
- then time
 - years as rows
 - months as columns

System: HIVE

Partitioning: Recursive subdivision

- switch order of splits
 - neighborhood then type
- very different patterns

Partitioning: Recursive subdivision

- different encoding for second-level regions
 - choropleth maps

How to handle complexity: 3 more strategies

<table>
<thead>
<tr>
<th>Manipulate</th>
<th>Facet</th>
<th>Reduce</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change</td>
<td>Juxtapose</td>
<td>Filter</td>
</tr>
<tr>
<td>Select</td>
<td>Partition</td>
<td>Aggregate</td>
</tr>
<tr>
<td>Navigate</td>
<td>Superimpose</td>
<td>Embed</td>
</tr>
</tbody>
</table>

- Derive

- reduce what is shown within single view
Reduce items and attributes

• reduce/increase: inverses

• filter
 – pro: straightforward and intuitive
 • to understand and compute
 – con: out of sight, out of mind

• aggregation
 – pro: inform about whole set
 – con: difficult to avoid losing signal

• not mutually exclusive
 – combine filter, aggregate
 – combine reduce, facet, change, derive

Reducing Items and Attributes

- Filter
 - Items
 - Attributes

- Aggregate
 - Items
 - Attributes

- Embed
Idiom: boxplot

- static item aggregation
- task: find distribution
- data: table
- derived data
 - 5 quant attribs
 - median: central line
 - lower and upper quartile: boxes
 - lower upper fences: whiskers
 - values beyond which items are outliers
 - outliers beyond fence cutoffs explicitly shown

[40 years of boxplots. Wickham and Stryjewski. 2012. had.co.nz]
Idiom: *Dimensionality reduction for documents*

- attribute aggregation
 - derive low-dimensional target space from high-dimensional measured space

Task 1

<table>
<thead>
<tr>
<th>In: HD data</th>
<th>Out: 2D data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item 1</td>
<td>Item 1</td>
</tr>
<tr>
<td>Item ...</td>
<td>Item ...</td>
</tr>
<tr>
<td>Item n</td>
<td>Item n</td>
</tr>
</tbody>
</table>

Task 2

<table>
<thead>
<tr>
<th>In: 2D data</th>
<th>Out: Scatterplot Clusters & points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item 1</td>
<td>Clusters & points</td>
</tr>
<tr>
<td>Item ...</td>
<td></td>
</tr>
<tr>
<td>Item n</td>
<td></td>
</tr>
</tbody>
</table>

Task 3

<table>
<thead>
<tr>
<th>In: Scatterplot Clusters & points</th>
<th>Out: Labels for clusters</th>
</tr>
</thead>
<tbody>
<tr>
<td>wombat</td>
<td></td>
</tr>
</tbody>
</table>
Data Types
- **Items**

Data and Datasets
- **Tables**
- **Items**
- **Attributes**

Actions
- **Analyze**
 - **Consume**
 - **Discover**
 - **Present**
 - **Enjoy**

All Data
- **Trends**
- **Outliers**
- **Features**

Why?
- **Actions**
- **Targets**

How?
- **Encode**
 - **Arrange**
 - **Express**
 - **Separate**
 - **Map**
 - **Color**
 - **Hue**
 - **Saturation**
 - **Luminance**
 - **Size, Angle, Curvature, ...**
 - **Shape**
 - **Motion**
 - **Direction, Rate, Frequency, ...**
 - **Facet**
 - **Select**
 - **Partition**
 - **Aggregate**
 - **Reduce**
 - **Change**
 - **Juxtapose**
 - **Filter**
 - **Embed**

Domain
- **abstraction**
- **idiom**
- **algorithm**
More Information

• this talk
 http://www.cs.ubc.ca/~tmm/talks.html#vad15tableau

• book page (including tutorial lecture slides)
 http://www.cs.ubc.ca/~tmm/vadbook
 – 20% promo code for book+ebook combo:
 HVN17

 – illustrations: Eamonn Maguire

• papers, videos, software, talks, full courses
 http://www.cs.ubc.ca/group/infovis
 http://www.cs.ubc.ca/~tmm

Visualization Analysis and Design.