Visualization Analysis & Design

Tamara Munzner
Department of Computer Science
University of British Columbia

Microsoft Research
February 19 2015, Seattle WA

http://www.cs.ubc.ca/~tmm/talks.html#vad15seattle
Defining visualization (vis)

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

Why?...
Why have a human in the loop?

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

Visualization is suitable when there is a need to augment human capabilities rather than replace people with computational decision-making methods.

• don’t need vis when fully automatic solution exists and is trusted
• many analysis problems ill-specified
 – don’t know exactly what questions to ask in advance
• possibilities
 – long-term use for end users (e.g. exploratory analysis of scientific data)
 – presentation of known results
 – stepping stone to better understanding of requirements before developing models
 – help developers of automatic solution refine/debug, determine parameters
 – help end users of automatic solutions verify, build trust
Why use an external representation?

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

- external representation: replace cognition with perception

Why represent all the data?

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

- summaries lose information, details matter
 – confirm expected and find unexpected patterns
 – assess validity of statistical model

Anscombe’s Quartet

<table>
<thead>
<tr>
<th>Identical statistics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>x mean</td>
<td>9</td>
</tr>
<tr>
<td>x variance</td>
<td>10</td>
</tr>
<tr>
<td>y mean</td>
<td>8</td>
</tr>
<tr>
<td>y variance</td>
<td>4</td>
</tr>
<tr>
<td>x/y correlation</td>
<td>1</td>
</tr>
</tbody>
</table>
Why are there resource limitations?

Vis designers must take into account three very different kinds of resource limitations: those of computers, of humans, and of displays.

• computational limits
 – processing time
 – system memory

• human limits
 – human attention and memory

• display limits
 – pixels are precious resource, the most constrained resource
 – **information density**: ratio of space used to encode info vs unused whitespace
 • tradeoff between clutter and wasting space, find sweet spot between dense and sparse
Why focus on tasks and effectiveness?

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks and work more effectively.

• what counts as effective?
 – novel: enable entirely new kinds of analysis
 – faster: speed up existing workflows

• most possibilities ineffective
 – increase chance of finding good solutions by understanding full space of possibilities

• tasks serve as constraint on design (as does data)
 – representations do not serve all tasks equally!
Analysis framework: Four levels, three questions

• **domain** situation
 – who are the target users?

• **abstraction**
 – translate from specifics of domain to vocabulary of vis
 • **what** is shown? **data abstraction**
 • **why** is the user looking at it? **task abstraction**

• **idiom**
 • **how** is it shown?
 • **visual encoding idiom**: how to draw
 • **interaction idiom**: how to manipulate

• **algorithm**
 – efficient computation

Validation methods from different fields for each level

Anthonyology/ethnography

- Domain situation
 - Observe target users using existing tools

- Data/task abstraction
 - Visual encoding/interaction idiom
 - Justify design with respect to alternatives
 - Algorithm
 - Measure system time/memory
 - Analyze computational complexity
 - Analyze results qualitatively
 - Measure human time with lab experiment (*lab study*)
 - Observe target users after deployment (*field study*)
 - Measure adoption

- Design
- Computer science
- Cognitive psychology

- Anthropology/ethnography

- mismatch: cannot show idiom good with system timings
- mismatch: cannot show abstraction good with lab study
Why analyze?
• imposes a structure on huge design space
 – scaffold to help you think systematically about choices
 – analyzing existing as stepping stone to designing new

Datasets

- **Data Types**
 - Items
 - Attributes
 - Links
 - Positions
 - Grids

- **Data and Dataset Types**
 - **Tables**
 - Items
 - Attributes
 - **Networks & Trees**
 - Items (nodes)
 - Grids
 - Positions
 - Attributes
 - **Fields**
 - Items
 - Positions
 - **Geometry**
 - Items
 - Positions
 - **Clusters, Sets, Lists**
 - Items

Attributes

- **Attribute Types**
 - Categorical
 - +
 - •
 - □
 - ▲
 - Ordered
 - Ordinal
 -
 - Quantitative

Ordering Direction

- Sequential
- Diverging
- Cyclic

Dataset Availability

- Static
- Dynamic

Geometry (Spatial)

Why?

How?
Dataset and data types

Attributes (columns)

- **Items (rows)**
- **Cell containing value**

Dataset Types

- **Tables**
- **Networks**

Attribute Types

- **Categorical**
- **Ordered**
 - **Ordinal**
 - **Quantitative**

Spatial

- **Fields (Continuous)**
- **Geometry (Spatial)**
 - **Grid of positions**
 - **Cell**
 - **Attributes (columns)**
 - **Value in cell**
 - **Position**
• {action, target} pairs
 – discover distribution
 – compare trends
 – locate outliers
 – browse topology
Actions I: Analyze

- **consume**
 - discover vs present
 - classic split
 - aka explore vs explain
 - enjoy
 - newcomer
 - aka casual, social

- **produce**
 - annotate, record
 - derive
 - crucial design choice
Actions II: Search

- what does user know?
 - target, location

Search

<table>
<thead>
<tr>
<th></th>
<th>Target known</th>
<th>Target unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location known</td>
<td>Lookup</td>
<td>Browse</td>
</tr>
<tr>
<td>Location unknown</td>
<td>Locate</td>
<td>Explore</td>
</tr>
</tbody>
</table>
Actions III: Query

• what does user know?
 – target, location

• how much of the data matters?
 – one, some, all

Search

<table>
<thead>
<tr>
<th>Location known</th>
<th>Target known</th>
<th>Target unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lookup</td>
<td>Browse</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location unknown</th>
<th>Target known</th>
<th>Target unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Locate</td>
<td>Explore</td>
</tr>
</tbody>
</table>

Query

- Identify
- Compare
- Summarize
Targets

- **All Data**
 - Trends
 - Outliers
 - Features

- **Attributes**
 - One
 - Distribution
 - Extremes
 - Many
 - Dependency
 - Correlation
 - Similarity

- **Network Data**
 - Topology
 - Paths

- **Spatial Data**
 - Shape
Encode

<table>
<thead>
<tr>
<th>Arrangement</th>
<th>Express</th>
<th>Separate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Order</td>
<td>Align</td>
<td></td>
</tr>
<tr>
<td>Use</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Map
- from *categorical* and *ordered* attributes
 - Color
 - Hue
 - Saturation
 - Luminance
 - Size, Angle, Curvature, ...
 - Shape
 - + ● ■ △
 - Motion
 - Direction, Rate, Frequency, ...

Manipulate

<table>
<thead>
<tr>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Select</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Navigate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Facet

<table>
<thead>
<tr>
<th>Juxtapose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Partition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Superimpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Reduce

<table>
<thead>
<tr>
<th>Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aggregate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Embed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Why?

What?

How?
How to encode: Arrange space, map channels

Encode

✅ **Arrange**
- Express
- Order
- Use

✅ **Map**
- from **categorical** and **ordered** attributes
 - Color
 - Hue
 - Saturation
 - Luminance
 - Size, Angle, Curvature, ...
 - Shape
 - Direction, Rate, Frequency, ...
 - Motion

✅ **Separate**

✅ **Align**
Encoding visually

• analyze idiom structure
Definitions: Marks and channels

• **marks**
 - geometric primitives

 ![Geometric primitives](image)

• **channels**
 - control appearance of marks

 ![Control appearance of marks](image)
Encoding visually with marks and channels

• analyze idiom structure
 – as combination of marks and channels

1: vertical position
mark: line

2: vertical position
horizontal position
mark: point

3: vertical position
horizontal position
color hue
mark: point

4: vertical position
horizontal position
color hue
size (area)
mark: point
Channels

Position on common scale
Position on unaligned scale
Length (1D size)
Tilt/angle
Area (2D size)
Depth (3D position)
Color luminance
Color saturation
Curvature
Volume (3D size)

Spatial region
Color hue
Motion
Shape

Magnitude Channels: Ordered Attributes
Identity Channels: Categorical Attributes
Spatial region
Color hue
Motion
Shape
Channels: Matching Types

Magnitude Channels: Ordered Attributes
- Position on common scale
- Position on unaligned scale
- Length (1D size)
- Tilt/angle
- Area (2D size)
- Depth (3D position)
- Color luminance
- Color saturation
- Curvature
- Volume (3D size)

Identity Channels: Categorical Attributes
- Spatial region
- Color hue
- Motion
- Shape

• expressiveness principle
 – match channel and data characteristics
Channels: Rankings

Magnitude Channels: Ordered Attributes
- Position on common scale
- Position on unaligned scale
- Length (1D size)
- Tilt/angle
- Area (2D size)
- Depth (3D position)
- Color luminance
- Color saturation
- Curvature
- Volume (3D size)

Identity Channels: Categorical Attributes
- Spatial region
- Color hue
- Motion
- Shape

- **expressiveness principle**
 - match channel and data characteristics
- **effectiveness principle**
 - encode most important attributes with highest ranked channels
How?

Encode
- **Arrange**
 - Express
 - Separate
- **Order**
 - Align
- **Use**
- **Map**
 - from *categorical* and *ordered* attributes
 - Color
 - Hue
 - Saturation
 - Luminance
 - Size, Angle, Curvature, ...
- **Shape**
 -
- **Motion**
 - Direction, Rate, Frequency, ...

Manipulate
- **Change**
- **Select**
- **Navigate**

Facet
- **Juxtapose**
- **Partition**
- **Superimpose**

Reduce
- **Filter**
- **Aggregate**
- **Embed**

What?

Why?

How?
How to handle complexity: 3 more strategies

+ 1 previous

Manipulate
- Change
- Select
- Navigate

Facet
- Juxtapose
- Partition
- Superimpose

Reduce
- Filter
- Aggregate
- Embed

Derive
- change view over time
- facet across multiple views
- reduce items/attributes within single view
- derive new data to show within view
How to handle complexity: 3 more strategies

Manipulate

- Change
- Select
- Navigate

Facet

- Juxtapose
- Partition
- Superimpose

Reduce

- Filter
- Aggregate
- Embed

Derive

- change over time
 - most obvious & flexible
 of the 4 strategies
Idiom: **Animated transitions**

- smooth transition from one state to another
 - alternative to jump cuts
 - support for item tracking when amount of change is limited
- example: multilevel matrix views
 - scope of what is shown narrows down
 - middle block stretches to fill space, additional structure appears within
 - other blocks squish down to increasingly aggregated representations

Facet

- **Juxtapose**

- **Partition**

- **Superimpose**

Coordinate Multiple Side By Side Views

- **Share Encoding: Same/Different**
 - *Linked Highlighting*

- **Share Data: All/Subset/None**

- **Share Navigation**
How to handle complexity: 3 more strategies

- Manipulate
 - Change
 - Select
 - Navigate

- Facet
 - Juxtapose
 - Partition
 - Superimpose

- Reduce
 - Filter
 - Aggregate
 - Embed

- Derive

• facet data across multiple views

+ 1 previous
Idiom: **Linked highlighting**

- see how regions contiguous in one view are distributed within another
 - powerful and pervasive interaction idiom

- encoding: different
 - *multiform*

- data: all shared

Idiom: **bird’s-eye maps**

- encoding: same
- data: subset shared
- navigation: shared
 - bidirectional linking

- differences
 - viewpoint
 - (size)

- **overview-detail**

Idiom: **Small multiples**

- encoding: same
- data: none shared
 - different attributes for node colors
 - (same network layout)
- navigation: shared

Coordinate views: Design choice interaction

<table>
<thead>
<tr>
<th>Encoding</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Same</td>
<td>All: Redundant</td>
</tr>
<tr>
<td></td>
<td>Subset: Overview/Detail</td>
</tr>
<tr>
<td></td>
<td>None: Small Multiples</td>
</tr>
<tr>
<td>Different</td>
<td>All: Multiform</td>
</tr>
<tr>
<td></td>
<td>Subset: Multiform, Overview/Detail</td>
</tr>
<tr>
<td></td>
<td>None: No Linkage</td>
</tr>
</tbody>
</table>

why juxtapose views?

- **benefits: eyes vs memory**
 - lower cognitive load to move eyes between 2 views than remembering previous state with single changing view
- **costs: display area, 2 views side by side each have only half the area of one view**
Partition into views

• how to divide data between views
 – encodes association between items using spatial proximity
 – major implications for what patterns are visible
 – split according to attributes

• design choices
 – how many splits
 • all the way down: one mark per region?
 • stop earlier, for more complex structure within region?
 – order in which attribs used to split
 – how many views
Partitioning: List alignment

• single bar chart with grouped bars
 – split by state into regions
 • complex glyph within each region showing all ages
 – compare: easy within state, hard across ages

• small-multiple bar charts
 – split by age into regions
 • one chart per region
 – compare: easy within age, harder across states
Partitioning: Recursive subdivision

• split by type
• then by neighborhood
• then time
 – years as rows
 – months as columns

System: HIVE

Partitioning: Recursive subdivision

- switch order of splits
 - neighborhood then type
- very different patterns

Partitioning: Recursive subdivision

- different encoding for second-level regions
 - choropleth maps

How to handle complexity: 3 more strategies

- **Manipulate**
 - Change
 - Select
 - Navigate

- **Facet**
 - Juxtapose
 - Partition
 - Superimpose

- **Reduce**
 - Filter
 - Aggregate
 - Embed

- **Derive**

 • reduce what is shown within single view
Reduce items and attributes

- reduce/increase: inverses
- filter
 - pro: straightforward and intuitive
 - to understand and compute
 - con: out of sight, out of mind
- aggregation
 - pro: inform about whole set
 - con: difficult to avoid losing signal
- not mutually exclusive
 - combine filter, aggregate
 - combine reduce, facet, change, derive

Reducing Items and Attributes

- Filter
 - Items
 - Attributes

- Aggregate
 - Items
 - Attributes
Idiom: **boxplot**

- static item aggregation
- task: find distribution
- data: table
- derived data
 - 5 quant attribs
 - median: central line
 - lower and upper quartile: boxes
 - lower upper fences: whiskers
 - values beyond which items are outliers
 - outliers beyond fence cutoffs explicitly shown

[40 years of boxplots. Wickham and Stryjewski. 2012. had.co.nz]
Idiom: Dimensionality reduction for documents

- attribute aggregation
 - derive low-dimensional target space from high-dimensional measured space

Task 1

What?
- In High-dimensional data
- Out 2D data

Why?
- Produce
- Derive

Task 2

What?
- In 2D data
- Out Scatterplot
- Out Clusters & points

Why?
- Discover
- Explore
- Identify

How?
- Encode
- Navigate
- Select

Task 3

What?
- In Scatterplot
- In Clusters & points
- Out Labels for clusters

Why?
- Produce
- Annotate
More Information

• this talk
 http://www.cs.ubc.ca/~tmm/talks.html#vad15seattle

• book page (including tutorial lecture slides)
 http://www.cs.ubc.ca/~tmm/vadbook
 – 20% promo code for book+ebook combo: HVN17

 – illustrations: Eamonn Maguire

• papers, videos, software, talks, full courses
 http://www.cs.ubc.ca/group/infovis
 http://www.cs.ubc.ca/~tmm