Visualization Analysis & Design

Tamara Munzner
Department of Computer Science
University of British Columbia

Why represent all the data?
Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

Why have a human in the loop?
Computer-based visualization systems provide visual representations of data that are designed to help people carry out tasks more effectively.

External representation:
- don’t need vision when fully automatic solution exists and is trusted
- many analysis problems ill-specified
- don’t know exactly what questions to ask in advance
- possibilities
- long-term use for end users (e.g., exploratory analysis of scientific data)
- presentation of known results
- stepping stones to better understanding of requirements before developing models
- help developers of automatic solution redifining, determine parameters
- help end users of automatic solutions verify build trust

Why is validation difficult?
- solution: use methods from different fields at each level

Why use an external representation?
External representation: replace cognition with perception

Action I: Analyze
- doesn’t just draw what you’re given!
- doesn’t just discover vs present
- classic split
- aka explore vs explain
- aka big data
- aka causal, social
- aka
- aka complex design choice

Analysis example: Derive one attribute
- table number
- centrality metric for tree/networks
- derived-quantitative attribute
- draw top 5% of SCF for good ideas

Types of Data and Datasets
- Tables
- Networks
- Spatial

Tables
- Attributes (columns)
- Value in cell
- Geometry (Spatial)

Networks
- Node (item)
- Fields (Continuous)
- Attributes (columns)

TreeJuxtaposer
- Tree
- Encode
- Navigate
- Select
- Filter
- Aggregate

Action II: Search
- what does user know?

Why is representation all the data?
- summaries lose information, details matter
- confirm expected and find unexpected

Why is validation difficult?
- different ways to get it wrong at each level

Why analyze?
- imposes a structure on huge design space
- scaffolding to help you think systematically about choices
- analyzing existing as stepping stone to designing new
Actions III: Query
• what does user know?
 – target, location
• how much of the data matters?
 – one, some, all
• analyze, search, query
 – independent choices for each

How to encode: Arrange space, map channels

Encoding visually
• analyze idiom structure

Channels: Matching Types
• expressiveness principle
 – match channel and data characteristics

Channels: Rankings
• expressiveness principle
 – match channel and data characteristics
• effectiveness principle
 – encode most important attributes with highest ranked channels

How to handle complexity: 3 more strategies
1 previous
• change view over time
 – facet across multiple views
 – reduce items/attributes within single view
 – derive new data to show within view

Idiom: Animated transitions
• smooth transition from one state to another
 – allows to jump cuts
 – support for item tracking when amount of change is limited
• example: multilevel matrix views
 – scope of what is shown narrows down

• nude block shrinks to fill space, additional structure appears within
 – other blocks squash down to increasingly aggregated representations
A quick taste of my own work!

Evaluation: Dimensionality reduction

Evaluation: Focus + Context
Separate vs integrated views
Distortion impact on search/memory
Heidi Lam
Ron Rensink
(UBC)
Robert Kincaid
(Agilent)
Heidi Lam
T P
E
F

A quick taste of my own work!

Problem-driven: Genomics
Problem-driven: Genomics, fisheries
Problem-driven: Many domains

Technique-driven: Graph drawing
Evaluation: Graph drawing

Theoretical foundations
Nested Model
Papers Process & Pitfalls
Design Study Methodology
Michael Sedlmair
Miriah Meyer
Aaron Barsky
Jenn Gardy
(Microbio)
Robert Kincaid
(Agilent)
Cerebral

Evaluation: Dimensionality reduction

Problem-driven: Genomics

Problem-driven: Many domains

Evaluation: Graph drawing

More Information
• this talk
• book page (including tutorial lecture slides)
 https://www.cs.ubc.ca/~tmm/vadbook
 20% promo code for book+ebook combo: HVPL
 → http://www.crcpress.com/product/isbn/9781466508910
 → Illustrations: Eamonn Maguire
• papers, videos, software, talks, full courses
 https://www.cs.ubc.ca/~tmm/talks.html#vad15fls
 this talk

Rainbows Just Like In The Sky
Color Cacophony
Hammer In Search Of Nail
Unjustified Visual Encoding

```
Illustrations: Eamonn Maguire
```

```
book page (including tutorial lecture slides)
```

```
papers, videos, software, talks, full courses
```

```
20% promo code for book+ebook combo: HVPL
```

```
Heidi Lam
Robert Kincaid
(UBC)
```

```
Robert Kincaid
Amy Hildebrandt
```

```
Michael Sedlmair
```

```
Dmitry Nekrasovski
```

```
Joanna McGrenere
```

```
Heidi Lam
Jessica Dawson
Miriah Meyer
```

```
Cerebral
```

```
Stephen Ingram
```

```
Matt Brehmer
```

```
Maryam Booshehrian
```

```
Heidi Lam
```

```
Robert Kincaid
```

```
Ron Rensink
```

```
Heidi Lam
Diane Tang
(Google)
```

```
Peter McLachlan
```

```
Miriah Meyer
```

```
Matthew S. Anderson
```

```
Jenn Gardy
```

```
Hanspeter Pfister
```

```
Michael Sedlmair
Miriah Meyer
Aaron Barsky
Jenn Gardy
```

```
Robert Kincaid
```

```
Diane Tang
(Google)
```

```
Michael Sedlmair
Miriah Meyer
Aaron Barsky
Jenn Gardy
```

```
Robert Kincaid
```

```
Ron Rensink
```

```
Matt Brehmer
```

```
Heidi Lam
```

```
Ron Rensink
```

```
James Slack
```

```
Michael Sedlmair
```

```
Johanna Fulda
```

```
Matt Brehmer
```

```
Heidi Lam
```

```
Robert Kincaid
```

```
Heidi Lam
```

```
Robert Kincaid
```

```
Heidi Lam
```

```