Encoding visually with marks and channels:
- analyze idiom structure
 - as combination of marks and channels

Channels:
- Position on common scale
- Position on logarithmic scale
- Length (1D size)
- Width (2D size)
- Depth (3D size)
- Color
- Color saturation
- Color luminance
- Curvature
- Area (2D size)
- Volume (3D size)

Identity Channels: Categorical Attributes
- Position on common scale
- Position on logarithmic scale
- Length (1D size)
- Width (2D size)
- Depth (3D size)
- Color
- Color saturation
- Color luminance
- Curvature
- Area (2D size)
- Volume (3D size)

Expressiveness principle:
- match channel and data characteristics
- effectiveness principle
- encode most important attributes with highest ranked channels

Accuracy: Fundamental Theory

Accuracy: Vis experiments

Separability vs. Integrity

Grouping
- containment
- connection

How to encode: Arrange position and region

How to encode: Arrange space, map channels

Idioms: dot chart, line chart
- one key, one value
 - dots
- 2+quantities
 - marks
 - dot plot
 - connection marks between them
 - channels
 - aligned heights to express qualitative
 - separated and ordered by key: short bars (horizontal)

- task
 - find trend
 - connection marks emphasize ordering of items along key (may help explicitly showing relationships between other keys and the rest)

Idioms: glyphmaps
- rectilinear good for linear vs nonlinear trends
- radial good for cyclic patterns
Coordinate views: Design choice interaction

- **Data**
 - All
 - Subset
 - None

- **Display**
 - Same
 - Multiform

- **Navigation**
 - Linked highlighting

- **Encoding**
 - Same
 - Different

- **Facet**
 - Coordinate
 - Multiple
 - Side By Side Views
 - Share Encoding: Same/Different
 - Share Data: All/Subset/None
 - Share Navigation

- **Map**
 - Coordinate
 - Multiple
 - Side By Side Views

- **Filter**
 - Embed

How to handle complexity: 3 more strategies

- **Manipulate**
 - Facet
 - Reduce

- **Change**
 - Select

- **Partition**
 - Superimpose

- **Juxtapose**
 - Embed

Why not animation?

- Disparate frames and regular association difficult
 - vs contiguous frames
 - vs small region
 - vs coherent motion of group

- Safe special case
 - Animated transitions

Partition into views

- **How to divide data between views**
 - map
 - association between items using spatial proximity
 - major implications for what patterns are visible
 - split according to attributes

- **Design choices**
 - how many splits
 - split by state into regions
 - vs coherent motion of group within region
 - order in which attributes used to split
 - how many views

Categorical color: Discriminability constraints

- 3 channels
 - identity for categorical
 - hue: magnitude for ordered
 - saturation: perceptually nonlinear

- RGB poor for encoding
- HSL better, but beware

Ordered color: Rainbow is poor default

- Problems
 - perceptually unordered
 - perceptually nonlinear

- Benefits
 - few hues for large-scale structures
 - multiple hues with monotonically increasing luminance for fine-grained
 - augmented rainbow good for categorical ok for binned

- Costs: display area, 2 views side by side each have only half the area of one view

Facet

- Juxtapose
- Partition
- Superimpose
- Embed

- Linked highlighting
- Filter
- Aggregate
- Embed

Idiom: Animated transitions

- Smooth transition from one state to another
- Support for item tracking when amount of change is limited

- Example: multilevel matrix views

- Scope of what is shown narrows down
- Middle block stretches to fill space, additional structure appears within
- Other blocks squash down to increasingly aggregated representations

Idiom: Small multiples

- Encoding: same
- Data: none shared
- Navigation: shared

- Different attributes for node colors
- Same network layout

- Overview-detail

Idiom: Small multiples

- Encoding: same
- Data: none shared
- Navigation: shared

- Different attributes for node colors
- Same network layout

- Overview-detail

Idiom: Animated transitions

- Smooth transition from one state to another
- Support for item tracking when amount of change is limited

- Example: Multilevel matrix views

- Scope of what is shown narrows down
- Middle block stretches to fill space, additional structure appears within
- Other blocks squash down to increasingly aggregated representations

Idiom: Linked highlighting

- See how regions contiguous in one view are distributed within another
 - Powerful and pervasive interaction idioms

- Encoding different
 - Multiform
 - Data shared

System: EDV

- Bird’s-eye maps

- Encoding same

- Data: subset shared

- Navigation: shared

- Abridged linking

- Differences

- Viewport

- Overview-detail

System: Cerebral

- Encoding same

- Data: none shared

- Navigation: shared

- Different attributes for node colors

- Same network layout

- Overview-detail

- Simple bar chart with grouped bars

- vs coherent motion of group within region

- Order in which attributes used to split

- How many views

Partitioning: List alignment

- Single bar chart with grouped bars

- Split by state into regions

- Simple glyph within each region showing all ages

- Compare many within state, hard across ages

- Small multiple charts

- Split by age into regions

- Compare many within age, harder across states

Ordered color: Rainbow is poor default

- Problems
 - Perceptually unordered
 - Perceptually nonlinear

- Benefits
 - Few hues for large-scale structures
 - Multiple hues with monotonically increasing luminance for fine-grained
 - Augmented rainbow good for categorical ok for binned

- Costs: display area, each view only half the area of one view

Why not animation?

- Disparate frames and regular association difficult
 - vs contiguous frames
 - vs small region
 - vs coherent motion of group

- Safe special case
 - Animated transitions

Categorical color: Discriminability constraints

- 3 channels
 - Identity for categorical
 - Hue: magnitude for ordered
 - Saturation: perceptually nonlinear

- RGB poor for encoding
- HSL better, but beware

- Perceptual nonlinearity

Ordered color: Rainbow is poor default

- Problems
 - Perceptually unordered
 - Perceptually nonlinear

- Benefits
 - Few hues for large-scale structures
 - Multiple hues with monotonically increasing luminance for fine-grained
 - Augmented rainbow good for categorical ok for binned

- Costs: display area, each view only half the area of one view

Why not animation?

- Disparate frames and regular association difficult
 - vs contiguous frames
 - vs small region
 - vs coherent motion of group

- Safe special case
 - Animated transitions

Categorical color: Discriminability constraints

- 3 channels
 - Identity for categorical
 - Hue: magnitude for ordered
 - Saturation: perceptually nonlinear

- RGB poor for encoding
- HSL better, but beware

- Perceptual nonlinearity

Ordered color: Rainbow is poor default

- Problems
 - Perceptually unordered
 - Perceptually nonlinear

- Benefits
 - Few hues for large-scale structures
 - Multiple hues with monotonically increasing luminance for fine-grained
 - Augmented rainbow good for categorical ok for binned

- Costs: display area, each view only half the area of one view

Why not animation?

- Disparate frames and regular association difficult
 - vs contiguous frames
 - vs small region
 - vs coherent motion of group

- Safe special case
 - Animated transitions

Categorical color: Discriminability constraints

- 3 channels
 - Identity for categorical
 - Hue: magnitude for ordered
 - Saturation: perceptually nonlinear

- RGB poor for encoding
- HSL better, but beware

- Perceptual nonlinearity

Ordered color: Rainbow is poor default

- Problems
 - Perceptually unordered
 - Perceptually nonlinear

- Benefits
 - Few hues for large-scale structures
 - Multiple hues with monotonically increasing luminance for fine-grained
 - Augmented rainbow good for categorical ok for binned

- Costs: display area, each view only half the area of one view

Why not animation?

- Disparate frames and regular association difficult
 - vs contiguous frames
 - vs small region
 - vs coherent motion of group

- Safe special case
 - Animated transitions

Categorical color: Discriminability constraints

- 3 channels
 - Identity for categorical
 - Hue: magnitude for ordered
 - Saturation: perceptually nonlinear

- RGB poor for encoding
- HSL better, but beware

- Perceptual nonlinearity

Ordered color: Rainbow is poor default

- Problems
 - Perceptually unordered
 - Perceptually nonlinear

- Benefits
 - Few hues for large-scale structures
 - Multiple hues with monotonically increasing luminance for fine-grained
 - Augmented rainbow good for categorical ok for binned

- Costs: display area, each view only half the area of one view

Why not animation?

- Disparate frames and regular association difficult
 - vs contiguous frames
 - vs small region
 - vs coherent motion of group

- Safe special case
 - Animated transitions
Partitioning: Recursive subdivision
• split by neighborhood
• then by type
• then time
– years as rows
– months as columns
– color by price
• neighborhood patterns
– where it’s expensive
– where you pay much more for detached type

How to handle complexity: 3 more strategies
More Information
• this talk
http://www.cyclus.de/~meyerbhs/hi-viz/slides
• book page (including tutorial lecture slides)
http://www.cyclus.de/~meyerbhs/hi-viz/Book
– 20% promo code for book+ebook combo: MHN17
– illustrations: Eamonn Maguire
• papers, videos, software, talks, full courses
http://www.cyclus.de/~meyerbhs/hi-viz/More
http://www.cyclus.de/~meyerbhs/hi-viz/Book