No unjustified 3D: Danger of depth

- we don't really live in 3D: we see in 2.05D
 - acquire more info on image plane quickly from eye movements
 - acquire more info for depth slower, from head/body motion

Occlusion hides information

- occlusion
- interaction complexity

Perspective distortion loses information

- perspective distortion
 - interferes with all size channel encodings
 - power of the plane is lost!

No unjustified 3D example: Time-series data

- extruded curves: detailed comparisons impossible

Why not animation?

- disparate frames and regions comparison difficult
 - vs contiguous frames
 - vs small region
 - vs coherent motion of group

Eyes beat memory example: Cerebral

- small multiples: one graph instance per experimental condition
 - some spatial layout
 - color differently by condition

Why not animation?

- disparate frames and regions comparison difficult
 - vs contiguous frames
 - vs small region
 - vs coherent motion of group

- change blindness
 - even major changes difficult to notice if mental buffer wiped

- special case
 - animated transitions
Resolution beats immersion

Overview first, zoom and filter, details on demand

• Influential mantra from Shneiderman

 • overview = summary

 • microcosm of full vis design problem

 • nuances

 — beyond just two levels: multi-scale structure

 — difficult when scale huge: give up on overview and browse local neighborhoods?

 • Algorithm

 • Domain situation

 — You misunderstood their needs

 — You're showing them the wrong thing

 — Visual encoding/interaction idiom

 — The way you show it doesn't work

 — Algorithm

 — Your code is too slow

 — Data/task abstraction

 — It's not the right data to visualize

 — The data is already abstracted

 — It's not the right abstraction to display

 — Algorithm

 • Further reading

 • Chap 6: Rules of Thumb

 • Design Studies: Lessons learned after 21 of them

 — Four Levels of Design

 — Analysis: What, Why, How

 — Design: How to Do Design Studies

 —4 Levels of Design

 — 2 Levels of Validation

 — Nested Levels of Design and Validation

 — Further reading

 • Design Study Methodology: Reflections from the Trenches and from the Stacks

 • Domain situation

 — You misunderstood their needs

 — You're showing them the wrong thing

 — Visual encoding/interaction idiom

 — The way you show it doesn't work

 — Algorithm

 — Your code is too slow

 — Data/task abstraction

 — It's not the right data to visualize

 — The data is already abstracted

 — It's not the right abstraction to display

 — Algorithm

 • First, focus on functionality

 — start with focus on functionality

 — straightforward to improve aesthetics later on, as refinement

 — if no expertise-in-house, find good graphic designer to work with

 — dangerous to start with aesthetics

 — usually impossible to add function retroactively

 — Final presentation, work, projects, future work

 — Pitfall Example: Premature Publishing

 • metaphor: horse race vs. music debut

 • Pitfall Example: Premature Publishing
Cancer Research
• collaboration with analysts at BC Genome Sciences Center
 – studying genetic basis of leukemia
• two big questions
 – what to show
 • data abstraction
 • challenge: enormous range of scales in the data
 – how to show
 • visual encoding idiom

Dominant paradigm: genome browsers
• strengths: flexible and powerful
 – horizontal tracks: user data
 – shared coordinate system: genome coordinates (bp)
• problems
 – tiny features of interest spread out across large extent
 – must zoom far in to inspect
 – high cognitive load for interaction
 – must already know where to look
 – no need for pan and zoom

Data: Filtering to relevant biological levels and scales
• Sequence Variant Definition
 – Sequence variants
 • Difference between reference and given genome
 – Discovery:
 • harmful variants
 • new candidate genes

Features of interest small even in variant-specific view
• pruning: reduce, filter, aggregate, embed
 • pruning
 – remove irrelevant information
 – focus on pertinent details

Abstractions
• Idioms
 – Visualization Analysis Framework
 – Idiom Design Choices, Part 2

Guidelines and Examples
• Map Color
 – for genome browsers

Filter out whole genome, keep genes
• Exon regions small

Visualization Analysis Framework
Session 1 10:00am-11:15am
– Introduction: Definitions
– Analysis: What, Why, How
– Marks and Channels

Idiom Design Choices
– Arrange Tables
– Arrange Spatial Docs
– Arrange Networks and Trees
– Map Color

Session 2 11:00am-12:15pm
– Guidelines and Examples
– Rules of Thumb
– Validation

Further reading
 – Chap 4: Analysis: Four Levels for Validation
 – Visualization Analysis Framework
 – Data: Filtering to relevant biological levels and scales
 – Design Study Methodology: Reflections from the Trenches and from the Stacks.

Outline
• Visualization Analysis Framework
 – Introduction: Definitions
 – Analysis: What, Why, How
 – Marks and Channels
• Idiom Design Choices, Part 2
 – Arrange Tables
 – Arrange Spatial Docs
 – Arrange Networks and Trees
 – Map Color
• Idiom Design Choices
 – Guidelines and Examples
 – Rules of Thumb
 – Validation

Further reading
 – Chap 4: Analysis: Four Levels for Validation
 – Visualization Analysis Framework
 – Data: Filtering to relevant biological levels and scales
 – Design Study Methodology: Reflections from the Trenches and from the Stacks.

Variant View: Visualizing Sequence Variants in their Gene Context.
http://www.cs.ubc.ca/~tmm/talks.html#minicourse14

Data abstraction: highly filtered scope of transcript coordinates
• strengths: flexible and powerful
 – horizontal tracks: user data
 – shared coordinate system: genome coordinates (bp)
• problems
 – tiny features of interest spread out across large extent
 – must zoom far in to inspect
 – high cognitive load for interaction
 – must already know where to look

Filter out non-exon regions
• Exon regions small

Presentation Example: Example 1

Variant View: Visualizing Sequence Variants in their Gene Context.
http://www.cs.ubc.ca/~tmm/talks.html#minicourse14
In contrast, low scoring genes...

No collocation of variants

Mostly unaffected protein regions

Methods

- **Phase 1: Winnow and Cast**
 - 3 months
 - **embedded within GSC for all stages**
 - **winnow stage**
 - considered and ruled out many potential collaborators
 - **cast stage**
 - **gatekeeper (PI)**
 - two front-line analysts (postdocs)

- **Phase 2: Core Design**
 - 5 months
 - **main task abstraction**
 - discover gene
 - **semi-structured interviews**
 - every week for 1 hr
 - **iterative refinement**
 - 8 data sketches deployed

- **Phase 3: Two More Tasks**
 - 1 month
 - **two new analysts**
 - connected by enthusiastic gatekeeper
 - **new task abstractions**
 - compare patients
 - debug pipeline
 - **minimal changes**

- **Phase 4: Reflect and write**
 - 3 months
 - **abstraction innovation**
 - data abstraction: highly filtered transcript coordinates (vs genome coordinates)
 - **guidelines**
 - specialise first, generalise later
 - **high-level considerations**
 - **what to visually encode directly vs what to support through interaction**
 - **when (and how) to eliminate navigation**

Outline

- **Visualization Analysis Framework**
 - Session 1 9:30-10:45am
 - Introduction: Definitions
 - Analysis: What, Why, How
 - Marks and Channels

- **Idiom Design Choices, Part 2**
 - Session 3 11:00am-12:15pm
 - Manipulate: Change, Select, Navigate
 - Focus: Juxtapose, Partition, Superimpose
 - Reduce: Filter, Aggregate, Embed

- **Idiom Design Choices**
 - Session 2 11:00am-12:15pm
 - Arrange Tables
 - Arrange Spatial Data
 - Arrange Networks and Trees
 - Map Color

- **Guidelines and Examples**
 - Session 4 1:15pm-2:45pm
 - Rules of Thumb
 - Validation
 - BioVis Analysis Example

More Information

- book
- this tutorial
- papers, videos, software, talks, courses
- conferences
 - VIS, VAST, InfoVis, SciVis
 - 2014 Paris, Nov 9-14
 - EuroVis
 - 2014 Swannee, Jun 9-13
 - BioVis
 - 2014 Boston, Jul 11-12 (w/ ISMB)
 - VizBi
 - 2015 Boston, March 25-27

http://www.cs.ubc.ca/~tmm/talks.html#minicourse14