Visualization Analysis & Design
Full-Day Tutorial
Session 1

Tamara Munzner
Department of Computer Science
University of British Columbia

Sanger Institute / European Bioinformatics Institute
June 2014, Cambridge UK

http://www.cs.ubc.ca/~tmm/talks.html#minicourse14
Outline

• Visualization Analysis Framework
 Session 1 9:30-10:45am
 – Introduction: Definitions
 – Analysis: What, Why, How
 – Marks and Channels

• Idiom Design Choices, Part 2
 Session 3 1:15pm-2:45pm
 – Manipulate: Change, Select, Navigate
 – Facet: Juxtapose, Partition, Superimpose
 – Reduce: Filter, Aggregate, Embed

• Idiom Design Choices
 Session 2 11:00am-12:15pm
 – Arrange Tables
 – Arrange Spatial Data
 – Arrange Networks and Trees
 – Map Color

• Guidelines and Examples
 Session 4 3-4:30pm
 – Rules of Thumb
 – Validation
 – BioVis Analysis Example

http://www.cs.ubc.ca/~tmm/talks.html#minicourse14
Outline

• Visualization Analysis Framework
 Session 1 9:30-10:45am
 – Introduction: Definitions
 – Analysis: What, Why, How
 – Marks and Channels

• Idiom Design Choices, Part 2
 Session 3 1:15pm-2:45pm
 – Manipulate: Change, Select, Navigate
 – Facet: Juxtapose, Partition, Superimpose
 – Reduce: Filter, Aggregate, Embed

• Idiom Design Choices
 Session 2 11:00am-12:15pm
 – Arrange Tables
 – Arrange Spatial Data
 – Arrange Networks and Trees
 – Map Color

• Guidelines and Examples
 Session 4 3-4:30pm
 – Rules of Thumb
 – Validation
 – BioVis Analysis Example

http://www.cs.ubc.ca/~tmm/talks.html#minicourse14
Defining visualization (vis)

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

Why?...
Why have a human in the loop?

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

Visualization is suitable when there is a need to augment human capabilities rather than replace people with computational decision-making methods.

• don’t need vis when fully automatic solution exists and is trusted
• many analysis problems ill-specified
 – don’t know exactly what questions to ask in advance
• possibilities
 – long-term use for end users (e.g. exploratory analysis of scientific data)
 – presentation of known results
 – stepping stone to better understanding of requirements before developing models
 – help developers of automatic solution refine/debug, determine parameters
 – help end users of automatic solutions verify, build trust
Why use an external representation?

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

- external representation: replace cognition with perception

Why have a computer in the loop?

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

- beyond human patience: scale to large datasets, support interactivity
 – consider: what aspects of hand-drawn diagrams are important?

Why depend on vision?

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

- human visual system is high-bandwidth channel to brain
 - overview possible due to background processing
 - subjective experience of seeing everything simultaneously
 - significant processing occurs in parallel and pre-attentively
- sound: lower bandwidth and different semantics
 - overview not supported
 - subjective experience of sequential stream
- touch/haptics: impoverished record/replay capacity
 - only very low-bandwidth communication thus far
- taste, smell: no viable record/replay devices
Why show the data in detail?

• summaries lose information
 – confirm expected and find unexpected patterns
 – assess validity of statistical model

Anscombe’s Quartet

<table>
<thead>
<tr>
<th>Identical statistics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>x mean</td>
<td>9</td>
</tr>
<tr>
<td>x variance</td>
<td>10</td>
</tr>
<tr>
<td>y mean</td>
<td>8</td>
</tr>
<tr>
<td>y variance</td>
<td>4</td>
</tr>
<tr>
<td>x/y correlation</td>
<td>1</td>
</tr>
</tbody>
</table>
Idiom design space

The design space of possible vis idioms is huge, and includes the considerations of both how to create and how to interact with visual representations.

• **idiom**: distinct approach to creating or manipulating visual representation

 – how to draw it: **visual encoding** idiom
 • many possibilities for how to create

 – how to manipulate it: **interaction** idiom
 • even more possibilities
 – make single idiom dynamic
 – link multiple idioms together through interaction

Why focus on tasks and effectiveness?

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks and effectively.

• tasks serve as constraint on design (as does data)
 – idioms do not serve all tasks equally!
 – challenge: recast tasks from domain-specific vocabulary to abstract forms

• most possibilities ineffective
 – validation is necessary, but tricky
 – increases chance of finding good solutions if you understand full space of possibilities

• what counts as effective?
 – novel: enable entirely new kinds of analysis
 – faster: speed up existing workflows
Vis designers must take into account three very different kinds of resource limitations: those of computers, of humans, and of displays.

- **computational limits**
 - processing time
 - system memory

- **human limits**
 - human attention and memory

- **display limits**
 - pixels are precious resource, the most constrained resource
 - **information density**: ratio of space used to encode info vs unused whitespace
 - tradeoff between clutter and wasting space, find sweet spot between dense and sparse
Further reading

 – Chap 1: What’s Vis, and Why Do It?
Outline

• Visualization Analysis Framework
 Session 1 9:30-10:45am
 – Introduction: Definitions
 – Analysis: What, Why, How
 – Marks and Channels

• Idiom Design Choices, Part 2
 Session 3 1:15pm-2:45pm
 – Manipulate: Change, Select, Navigate
 – Facet: Juxtapose, Partition, Superimpose
 – Reduce: Filter, Aggregate, Embed

• Idiom Design Choices
 Session 2 11:00am-12:15pm
 – Arrange Tables
 – Arrange Spatial Data
 – Arrange Networks and Trees
 – Map Color

• Guidelines and Examples
 Session 4 3-4:30pm
 – Rules of Thumb
 – Validation
 – BioVis Analysis Example

http://www.cs.ubc.ca/~tmm/talks.html#minicourse14
Analysis: What, why, and how

- **what** is shown?
 - **data** abstraction

- **why** is the user looking at it?
 - **task** abstraction

- **how** is it shown?
 - **idiom**: visual encoding and interaction

- abstract vocabulary avoids domain-specific terms
 - translation process iterative, tricky

- what-why-how analysis framework as scaffold to think systematically about design space
What?

- **Data Types**
 - Items
 - Attributes
 - Links
 - Positions
 - Grids

- **Data and Dataset Types**
 - **Tables**
 - Items
 - Attributes
 - **Networks & Trees**
 - Items (nodes)
 - Grids
 - Positions
 - Attributes
 - **Geometry**
 - Items
 - Positions
 - **Clusters, Sets, Lists**
 - Items

Attributes

- **Attribute Types**
 - Categorical
 - Ordered
 - Ordinal
 - Quantitative

Dataset Types

- **Tables**
 - **Multidimensional Table**
 - Attributes (columns)
 - Items (rows)
 - Cell containing value

- **Networks**
 - **Trees**
 - Link
 - Node (item)
 - Grid of positions
 - Attributes (columns)
 - Value in cell

- **Geometry**
 - **Spatial**
 - Position

Ordering Direction

- **Sequential**
- **Diverging**
- **Cyclic**

Dataset Availability

- **Static**
- **Dynamic**
Dataset types

Dataset Types

→ Tables

Attributes (columns)

Items (rows)

Cell containing value

→ Networks

Link

Node (item)

→ Fields (Continuous)

Grid of positions

Cell

Attributes (columns)

Value in cell

→ Geometry (Spatial)

Position

→ Multidimensional Table

Key 1

Key 2

Value in cell

→ Trees
Dataset and data types

Data and Dataset Types

<table>
<thead>
<tr>
<th>Tables</th>
<th>Networks & Trees</th>
<th>Fields</th>
<th>Geometry</th>
<th>Clusters, Sets, Lists</th>
</tr>
</thead>
<tbody>
<tr>
<td>Items</td>
<td>Items (nodes)</td>
<td>Grids</td>
<td>Items</td>
<td>Items</td>
</tr>
<tr>
<td>Attributes</td>
<td>Links</td>
<td>Positions</td>
<td>Attributes</td>
<td>Positions</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data Types

- Items
- Attributes
- Links
- Positions
- Grids

Dataset Availability

- Static
- Dynamic
Attribute types

- **Attribute Types**
 - Categorical
 - Symbols: +, ●, □, △
 - Ordered
 - Symbols: ▲, ▼
 - Ordinal
 - Symbols: ▲, ▼
 - Quantitative
 - Symbols: |

- **Ordering Direction**
 - Sequential
 - Symbols: →
 - Diverging
 - Symbols: ↔
 - Cyclic
 - Symbols: ⌘
• {action, target} pairs
 – discover distribution
 – compare trends
 – locate outliers
 – browse topology
High-level actions: Analyze

• consume
 – discover vs present
 • classic split
 • aka explore vs explain
 – enjoy
 • newcomer
 • aka casual, social

• produce
 – annotate, record
 – derive
 • crucial design choice
Actions: Mid-level search, low-level query

• what does user know?
 – target, location

• how much of the data matters?
 – one, some, all
Why: Targets

- **ALL DATA**
 - Trends
 - Outliers
 - Features

- **ATTRIBUTES**
 - One
 - Distribution
 - Extremes
 - Many
 - Dependency
 - Correlation
 - Similarity

- **NETWORK DATA**
 - Topology
 - Paths

- **SPATIAL DATA**
 - Shape
Encode

- **Arrange**
 - Express
 - Separate

- **Order**
 - Align

- **Use**

Map
from *categorical* and *ordered* attributes

- **Color**
 - Hue
 - Saturation
 - Luminance

- **Size, Angle, Curvature, ...**

- **Shape**

- **Motion**
 Direction, Rate, Frequency, ...

Manipulate

- **Change**

- **Select**

- **Navigate**

Facet

- **Juxtapose**

- **Partition**

- **Superimpose**

Reduce

- **Filter**

- **Aggregate**

- **Embed**

How?

What?

Why?

How?
Analysis example: Compare idioms

SpaceTree

- Actions: Present, Locate, Identify
- Targets: Path between two nodes

TreeJuxtaposer

- Actions: Encode, Navigate, Select, Filter, Aggregate
- Targets: Path between two nodes

Chained sequences

• output of one is input to next
 – express dependencies
 – separate means from ends
Analysis example: Derive one attribute

- Strahler number
 - centrality metric for trees/networks
 - derived quantitative attribute
 - draw top 5K of 500K for good skeleton

Task 1

- In Tree
- Out Quantitative attribute on nodes

What?
- In Tree
- Out Quantitative attribute on nodes

Why?
- Derive

Task 2

- In Tree
- Out Quantitative attribute on nodes
- In Tree
- In Quantitative attribute on nodes
- Out Filtered Tree
- Removed unimportant parts

What?
- In Tree
- In Quantitative attribute on nodes
- Out Filtered Tree

Why?
- Summarize
- Topology

How?
- Reduce
- Filter
Further reading

 – Chap 2: What: Data Abstraction
 – Chap 3: Why: Task Abstraction

Outline

• Visualization Analysis Framework
 Session 1 9:30-10:45am
 – Introduction: Definitions
 – Analysis: What, Why, How
 – Marks and Channels

• Idiom Design Choices, Part 2
 Session 3 1:15pm-2:45pm
 – Manipulate: Change, Select, Navigate
 – Facet: Juxtapose, Partition, Superimpose
 – Reduce: Filter, Aggregate, Embed

• Idiom Design Choices
 Session 2 11:00am-12:15pm
 – Arrange Tables
 – Arrange Spatial Data
 – Arrange Networks and Trees
 – Map Color

• Guidelines and Examples
 Session 4 3-4:30pm
 – Rules of Thumb
 – Validation
 – BioVis Analysis Example

http://www.cs.ubc.ca/~tmm/talks.html#minicourse14
Visual encoding

• analyze idiom structure
Definitions: Marks and channels

• marks
 – geometric primitives

• channels
 – control appearance of marks
 – can redundantly code with multiple channels

• interactions
 – point marks only convey position; no area constraints
 • can be size and shape coded
 – line marks convey position and length
 • can only be size coded in 1D (width)
 – area marks fully constrained
 • cannot be size or shape coded
Visual encoding

• analyze idiom structure
 – as combination of marks and channels

1: vertical position
mark: line

2: vertical position
horizontal position
mark: point

3: vertical position
horizontal position
color hue
mark: point

4: vertical position
horizontal position
color hue
size (area)
mark: point
Channels: Expressiveness types and effectiveness rankings

Magnitude Channels: Ordered Attributes
- Position on common scale
- Position on unaligned scale
- Length (1D size)
- Tilt/angle
- Area (2D size)
- Depth (3D position)
- Color luminance
- Color saturation
- Curvature
- Volume (3D size)

Identity Channels: Categorical Attributes
- Spatial region
- Color hue
- Motion
- Shape
Effectiveness and expressiveness principles

• **effectiveness principle**
 – encode most important attributes with highest ranked channels

• **expressiveness principle**
 – match channel and data characteristics

• rankings: where do they come from?
 – accuracy
 – discriminability
 – separability
 – popout
Accuracy: Fundamental Theory

Steven’s Psychophysical Power Law: $S = I^N$
Accuracy: Vis experiments

Discriminability: How many usable steps?

- linewidth: only a few
Separability vs. Integrality

<table>
<thead>
<tr>
<th>Position + Hue (Color)</th>
<th>Size + Hue (Color)</th>
<th>Width + Height</th>
<th>Red + Green</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fully separable</td>
<td>Some interference</td>
<td>Some/significant interference</td>
<td>Major interference</td>
</tr>
<tr>
<td>2 groups each</td>
<td>2 groups each</td>
<td>3 groups total: integral area</td>
<td>4 groups total: integral hue</td>
</tr>
</tbody>
</table>
Popout

• find the red dot
 – how long does it take?

• parallel processing on many individual channels
 – speed independent of distractor count
 – speed depends on channel and amount of difference from distractors

• serial search for (almost all) combinations
 – speed depends on number of distractors
• many channels: tilt, size, shape, proximity, shadow direction, ...
• but not all! parallel line pairs do not pop out from tilted pairs
Grouping

- containment
- connection

Marks as Links

- Containment
- Connection

Identity Channels: Categorical Attributes

- Spatial region
- Color hue
- Motion
- Shape
Relative vs. absolute judgements

• perceptual system mostly operates with relative judgements, not absolute
 – that’s why accuracy increases with common frame(scale) and alignment
 – Weber’s Law: ratio of increment to background is constant
 • filled rectangles differ in length by 1:9, difficult judgement
 • white rectangles differ in length by 1:2, easy judgement

length

position along unaligned common scale

position along aligned scale

Further reading

 – Chap 5: Marks and Channels

