Visualization and Biology: Fertile Ground for Collaboration

Tamara Munzner
Department of Computer Science
University of British Columbia

February 2009

http://www.cs.ubc.ca/~tmm/talks.html#harvard09

Outline

• visualization ideas and background
• combining interaction networks, microarray data
 – Cerebral system
• comparing phylogenetic trees
 – TreeJustposer system
• discussion

Why do visualization?

• pictures help us think
 – substitute perception for cognition
 – external memory: free up limited cognitive/memory resources for higher-level problems
• finding gaps, breakdowns, slow downs
 – where conjecture that vis would help

When should we bother doing vis?

• need a human in the loop
 – augment, not replace, human cognition
 – for problems that cannot be (completely) automated
• simple summary not adequate
 – statistics may not adequately characterize complexity of dataset distribution

Characterizing problems

• understanding domain concepts and current workflow
• finding gaps, breakdowns, slowdowns
 – where conjecture that vis would help

Abstracting into operations on data types

• data types
 – tables of numbers
 – relations: networks/graphs, hierarchies/trees
 – spatial data: geographic, positions in space
• operations
 – sorting, filtering, browsing, comparison, characterizing trends and distributions, finding anomalies and outliers, finding correlation...
 – relations: following path through network...

Designing encoding and interaction

• visual encoding
 – marks: points, lines, areas
 – attributes: position, color, shape, size, orientation,
• interaction
 – selecting, navigating, ordering...

Creating efficient algorithms

• classic computer science problem
 – create algorithm given clear specification

Design decisions

• huge space of design alternatives
 – conflicting tradeoffs
 – iterative refinement often necessary
• many/most choices are ineffective
 – wrong visual encoding can mislead, confuse
 – principled reasons to make choices usually not obvious to untrained people

Validation: Is problem solved?

• humans in the loop for outer three levels

Collaboration: Complementary expertise

• vis researchers
 – vis design alternatives
 – human perceptual capabilities
 – scalable graphics algorithms
 – validation methodology
• domain scientists
 – deep knowledge of driving problems, data

Good driving problems for vis research

• big data
• reasonably clear questions
• need for humans in the loop

Outline

• visualization ideas and background
• combining interaction networks, microarray data
 – Cerebral system
• comparing phylogenetic trees
 – TreeJustposer system
• discussion

Visualization and Biology: Fertile Ground for Collaboration

Tamara Munzner
Department of Computer Science
University of British Columbia

February 2009

http://www.cs.ubc.ca/~tmm/talks.html#harvard09

Outline

• visualization ideas and background
• combining interaction networks, microarray data
 – Cerebral system
• comparing phylogenetic trees
 – TreeJustposer system
• discussion

Why do visualization?

• pictures help us think
 – substitute perception for cognition
 – external memory: free up limited cognitive/memory resources for higher-level problems
• finding gaps, breakdowns, slow downs
 – where conjecture that vis would help

When should we bother doing vis?

• need a human in the loop
 – augment, not replace, human cognition
 – for problems that cannot be (completely) automated
• simple summary not adequate
 – statistics may not adequately characterize complexity of dataset distribution

Characterizing problems

• understanding domain concepts and current workflow
• finding gaps, breakdowns, slowdowns
 – where conjecture that vis would help

Abstracting into operations on data types

• data types
 – tables of numbers
 – relations: networks/graphs, hierarchies/trees
 – spatial data: geographic, positions in space
• operations
 – sorting, filtering, browsing, comparison, characterizing trends and distributions, finding anomalies and outliers, finding correlation...
 – relations: following path through network...

Designing encoding and interaction

• visual encoding
 – marks: points, lines, areas
 – attributes: position, color, shape, size, orientation,
• interaction
 – selecting, navigating, ordering...

Creating efficient algorithms

• classic computer science problem
 – create algorithm given clear specification

Design decisions

• huge space of design alternatives
 – conflicting tradeoffs
 – iterative refinement often necessary
• many/most choices are ineffective
 – wrong visual encoding can mislead, confuse
 – principled reasons to make choices usually not obvious to untrained people

Validation: Is problem solved?

• humans in the loop for outer three levels

Collaboration: Complementary expertise

• vis researchers
 – vis design alternatives
 – human perceptual capabilities
 – scalable graphics algorithms
 – validation methodology
• domain scientists
 – deep knowledge of driving problems, data

Good driving problems for vis research

• big data
• reasonably clear questions
• need for humans in the loop

Outline

• visualization ideas and background
• combining interaction networks, microarray data
 – Cerebral system
• comparing phylogenetic trees
 – TreeJustposer system
• discussion
Systems biology model
- graph $G = (V, E)$
 - V: proteins, genes, DNA, RNA, tRNA, etc.
 - E: interacting molecules

Model - Experiment cycle
- conduct experiments on cells
- interpret results in current graph model
- propose modifications to refine model
- vis tool to accelerate workflow?

Goal: Integrate model with measurements
- system model
 - interaction graph $G = (V, E)$
 - meta-data for each v in V
 - labels, biological attributes
 - experimental measurements
 - multiple floats for each v in V
 - microarray data

Model summarizes extensive lab work
- graphs come from hand-curated databases
- each edge has provenance from experimental evidence
- FRAM: an iterative model refinement technique
- Toll-like receptor pathway
- MAPK and TNF signaling pathways
- HAIR-PROTEIN interaction
- Francisella tularensis

Cerebral layout using biological metadata
- similar to hand-drawn
- spatial position reveals location in cell
- simulated annealing in $O(E^{1/2}V)$ vs. $O(V^3)$ time

Human interactome: $E=50,000$, $V=10,000$
- too complex, beyond scope of tool

Cerebral video
- interactions generally occur within a compartment
- crossing membranes is interesting
- biological cells divided by membranes

Encoding and interaction design decisions
- create custom graph layout
 - guided by biological metadata
- use small multiple views
 - one view per experimental condition
- show measured data in graph context
 - not in isolation

Traditional graph layout
- given graph $G=(V,E)$
- create layout in 2D plane
 - hundreds of papers
 - annual Graph Drawing conf.
 - Circular (Six and Tollis, 1999)
 - Force-directed (Fruchterman and Reingold, 1991)
 - Hierarchical (Sugiyama, 1989)

Existing layouts did not suit immunologists
- graph drawing goals
 - visualize graph structure
- biologist goals
 - visualize biological knowledge
 - some relationships happen to form a graph
 - cell location also relevant

Biological cells divided by membranes
- interactions generally occur within a compartment
- crossing membranes is interesting

TLR4 biomolecule: $E=74$, $V=54$
- very local view

Immune system: $E=1263$, $V=760$
- bigger picture, target size for Cerebral

Human interactome: $E=50,000$, $V=10,000$
- too complex, beyond scope of tool

Why not animation?
- global comparison difficult

Use small multiple views
- one graph instance per experimental condition
 - same spatial layout
 - color differently, by condition

Hand-drawn diagrams
- cellular location encoded spatially
- infeasible to create by hand in era of big data

Cerebral layout using biological metadata
- similar to hand-drawn
- spatial position reveals location in cell
- simulated annealing in $O(E^{1/2}V)$ vs. $O(V^3)$ time

Why not animation?
- global comparison difficult

Human interactome: $E=50,000$, $V=10,000$
- too complex, beyond scope of tool
Why not animation?
- limits of human visual memory
 - compared to side by side visual comparison

Why not glyphs?
- embed multiple conditions as a chart inside node
 - clearly visible when zoomed in
 - but cannot see from global view
 - only one value shown in overview

Show measured data in graph context
- data driven hypothesis
 - clusters indicate similar function?
 - same pattern of gene expression → same role in cell?
- clusters are often untrustworthy artifacts!
 - noisy data: different clustering alg. → different results
- measured data alone potentially misleading
 - show in context of graph model

Adoption by biologists

Phylogenetic (evolutionary) tree

Common dataset size today

Future goal: Full Tree of Life, ~10M nodes
- Plants
- Protists
- Fungi
- Animals

Operation: Comparing multiple trees
- presentation: single tree shown as final result
 - exploration: determine true tree from many possibilities
 - different biological conjectures or data
 - different phylogenetic reconstruction algorithms
 - multiple alternatives from same reconstruction algorithm
 - most previous work on browsing
 - necessary but not sufficient for comparison

Limitations of paper: Scale and speed
- literal: actual paper
 - figurative: interfaces with same semantics as paper
 - need to focus on details
 - yet maintain context

TreeJuxtaposer
- collaboration with biologists at UT-Austin Hills Lab
 - open-source software download
 - http://evolution.sourceforge.net/

Encoding and interaction design decisions
- linking tree views through node correspondences
 - showing structural differences
- guaranteed visibility of small marks
 - scaling up to millions of nodes

InnateDB links to Cerebral
- InnateDB: facilitating systems-level analyses of the mammalian innate immune response
 - http://innatedb.ca

Data cleansing example
- incorrect edge across many compartments
 - in well studied dataset
 - not obvious with other layouts

Cerebral summary
- supports interactive exploration of multiple experimental conditions in graph context
- provides familiar representation by using biological metadata to guide graph layout

Outline
- visualization ideas and background
- combining interaction networks, microarray data
 - Cerebral system
- comparing phylogenetic trees
 - TreeJuxtaposer system
- discussion
Showing differences via contiguous groups
- clade: ancestor + all descendants
- biological questions to support
 - is a clade in one tree also a clade in other?
 - is some group a clade?

Best corresponding node between trees

Guaranteed visibility
- marks are always visible
 - structural differences, search results, user selections
- easy with small datasets
 - regions of interest shown with color highlights

Guaranteed visibility challenges
- hard with larger datasets
- reasons a mark could be invisible

Guaranteed visibility challenges
- hard with larger datasets
- reasons a mark could be invisible

Guaranteed visibility benefits
- with GV
 - no mark is visible means no need to explore area further
- without GV
 - risk of false negative conclusions, or
 - user must do tedious exhaustive search to ensure nothing missed
- algorithm scalability challenge
 - rendering complexity based on number of onscreen pixels
 - not total number of items in dataset
 - \(O(n \log^2 n) \), vs. naive \(O(n^2) \)

Constrained navigation for visibility
- stretch and squish navigation
 - stretch out part of surface, the rest squishes
 - borders nailed down
 - integrated focus and context
- items never fall outside camera
 - but squished regions can have many items per pixel

Guaranteed visibility challenges
- hard with larger datasets
- reasons a mark could be invisible
 - mark outside the window
 - solution: constrained navigation
 - mark underneath other marks
 - solution: use 2D not 3D layout
- mark smaller than a pixel
 - solution: smart culling

Smart culling for small item visibility
- naive culling does not draw all marked items
 - graphics cards optimized for realism: small items far away and thus not important
 - rendering infrastructure for visualization semantics: small items might be critical

Guaranteed visibility benefits
- with GV
 - no mark is visible means no need to explore area further
- without GV
 - risk of false negative conclusions, or
 - user must do tedious exhaustive search to ensure nothing missed
- algorithm scalability challenge
 - rendering complexity based on number of onscreen pixels
 - not total number of items in dataset
 - \(O(n \log^2 n) \), vs. naive \(O(n^2) \)

Constrained navigation for visibility
- stretch and squish navigation
 - stretch out part of surface, the rest squishes
 - borders nailed down
 - integrated focus and context
- items never fall outside camera
 - but squished regions can have many items per pixel

Guaranteed visibility challenges
- hard with larger datasets
- reasons a mark could be invisible
 - mark outside the window
 - solution: constrained navigation
 - mark underneath other marks
 - solution: use 2D not 3D layout
- mark smaller than a pixel
 - solution: smart culling

Guaranteed visibility challenges
- hard with larger datasets
- reasons a mark could be invisible

TJ summary
- first interactive tree comparison system
 - automatic structural difference computation
 - guaranteed visibility of small marks
- scalable to large datasets
 - 250K to 500K total nodes: original
 - up to 4M nodes: later, with PRISAD
 - subquadratic preprocessing
 - sublinear realtime rendering
 - depends on number of pixels, not number of nodes

Crosscutting themes
- workflow speedups
 - inspecting microarray data with graph
 - minutes vs. hours/days
 - comparing clades between trees
 - seconds vs. hours/days
- contributions from biologist collaborators
 - driving problems and data
 - tool use during iterative refinement

Outline
- visualization ideas and background
 - combining interaction networks, microarray data
 - Cerebral system
 - comparing phylogenetic trees
 - TreeJuxtaposer system
- discussion

Many more, bio/health + others...
- NIH/NCF Visualization Research Challenges Report
 - Johnson, Moorhead, Munzner, Pfister, Rheingans, and Yoo (eds.), IEEE Press
 - http://vgtc.org/wpmu/techcom/?page_id=11

Many other bio/vis research areas
- multiple sequence alignment
 - SequenceJuxtaposer
 - open-source software download
 - http://olduvai.sourceforge.net/sj

Many other bio/vis research areas
- microarray data
 - Hierarchical Clustering Explorer
 - Seo and Shneiderman, U Maryland

Many other bio/vis research areas
- microarray data
 - Hierarchical Clustering Explorer
 - Seo and Shneiderman, U Maryland

Crosscutting themes
- workflow speedups
 - inspecting microarray data with graph
 - minutes vs. hours/days
 - comparing clades between trees
 - seconds vs. hours/days
- contributions from biologist collaborators
 - driving problems and data
 - tool use during iterative refinement
Vast opportunities

- young field, still much to be done
- think about your current workflow
 - what could you speed up by swapping in perception for cognition?
 - exploit the familiar, yet consider breadth of design alternatives
- finding some friendly neighborhood vis collaborators
 - IEEE VisWeek 2009 (Vis, InfoVis, VAST)
 Oct 11-16, Atlantic City
 http://vis.computer.org/VisWeek2009
 - EuroVis 2009: Jun 10-12, Berlin
 http://www.zib.de/eurovis09

More information

- this talk
 http://www.cs.ubc.ca/~tmm/talks.html#harvard09
- papers, videos
 http://www.cs.ubc.ca/~tmm
- software
 http://olduvai.sourceforge.net/
 http://www.pathogenomics.ca/cerebral
 http://www.innatedb.ca