Visualization and Biology: Fertile Ground for Collaboration

Tamara Munzner
Department of Computer Science
University of British Columbia
June 2009

Outline
• visualization ideas and background
 • combining interaction networks, microarray data
 – Cerebral system
 • comparing phylogenetic trees
 – TreeJuxtaposer system

Why do visualization?
• pictures help us think
 – substitute perception for cognition
 – external memory: free up limited cognitive/memory resources for higher-level problems

When should we bother doing vis?
• need a human in the loop
 – augment, not replace, human cognition
 – for problems that cannot be (completely) automated
 – simple summary not adequate
 – statistics may not adequately characterize complexity of dataset distribution

http://www.cs.ubc.ca/~tmm/talks.html#eindhoven09

Collaboration: Complementary expertise
• vis researchers
 – vis design alternatives
 – human perceptual capabilities
 – scalable graphics algorithms
 – validation methodology
• domain scientists
 – deep knowledge of driving problems, data
 – both benefit from new tools
 – scientist: you get something helpful
 – vis researcher: we get to watch you use it
 – see if problem actually solved
 – need new knowledge back into our design principles

Designing encoding and interaction
• visual encoding
 – marks: points, lines, areas
 – attributes: position, color, shape, size, orientation...
• interaction
 – selecting, navigating, ordering...

Creating efficient algorithms
• classic computer science problem
 – create algorithm given clear specification

Characterizing problems
• understanding domain concepts and current workflow
• finding gaps, breakdowns, slowdowns
 – where conjecture that vis would help

Design decisions
• huge space of design alternatives
 – many/most choices are ineffective
 – wrong visual encoding can mislead, confuse
 – principled reasons to make choices usually not obvious to untrained people
 – conflicting tradeoffs
 – iterative refinement often necessary

Validation: Is problem solved?
• humans in the loop for outer three levels

Good driving problems for vis research
• big data
• reasonably clear questions
• need for humans in the loop
• many areas of science are a great match
 – biology particularly appealing

Outline
• visualization ideas and background
 • combining interaction networks, microarray data
 – Cerebral system
 • comparing phylogenetic trees
 – TreeJuxtaposer system

http://www.innatedb.ca
http://www.pathogenomics.ca/cerebral/
open-source software download (Cytoscape plugin)
Systems biology model

- graph $G = (V, E)$
 - V: proteins, genes, DNA, RNA, tRNA, etc.
 - E: interacting molecules

Model - Experiment cycle

- conduct experiments on cells
- interpret results in current graph model
- propose modifications to refine model
- vis tool to accelerate workflow?

Goal: Integrate model with measurements

- system model
 - interaction graph $G = (V, E)$
 - meta-data for each v in V
 - labels, biological attributes
 - experimental measurements
 - multiple floats for each v in V
 - microarray data

Encoding and interaction design decisions

- create custom graph layout
 - guided by biological metadata
- use small multiple views
 - one view per experimental condition
- show measured data in graph context
 - not in isolation

Immune system: $E=1263$, $V=760$

- bigger picture, target size for Cerebral

Human interactome: $E \approx 50,000$, $V \approx 10,000$

- too complex, beyond scope of tool

Existing layouts did not suit immunologists

- graph drawing goals
 - visualize graph structure
- biologist goals
 - visualize biological knowledge
 - some relationships happen to form a graph
 - cell location also relevant

Model summarizes extensive lab work

- graphs come from hand-curated databases
 - dynamic, change with each new publication
- each edge has provenance from experimental evidence

Why not animation?

- global comparison difficult
- interactions generally occur within a compartment
- crossing membranes is interesting

Biological cells divided by membranes

Hand-drawn diagrams

- cellular location encoded spatially
- infeasible to create by hand in era of big data

Cerebral layout using biological metadata

- similar to hand-drawn
 - spatial position reveals location in cell
- simulated annealing in $O(E + V)$ vs. $O(V^2)$ time

Use small multiple views

- one graph instance per experimental condition
 - same spatial layout
 - color differently, by condition

Why not animation?

- choose scope to manage complexity

TLR4 biomolecule: $E=74$, $V=54$

- very local view

Cerebral video

- similar to hand-drawn
 - spatial position reveals location in cell
 - simulated annealing in $O(E + V)$ vs. $O(V^2)$ time
Why not animation?
- limits of human visual memory
 - compared to side by side visual comparison

Why not glyphs?
- embed multiple conditions as a chart inside node
 - clearly visible when zoomed in
 - but cannot see from global view
 - only one value shown in overview

Show measured data in graph context
- data driven hypothesis
 - clusters indicate similar function?
 - same pattern of gene expression → same role in cell?
- clusters are often untrustworthy artifacts!
 - noisy data: different clustering alg. → different results
 - measured data alone potentially misleading
 - show in context of graph model

Operation: Comparing multiple trees
- presentation: single tree shown as final result
- exploration: determine true tree from many possibilities
 - different biological conjectures or data
 - different phylogenetic reconstruction algorithms
 - multiple alternatives from same reconstruction algorithm
- most previous work on browsing
 - necessary but not sufficient for comparison

InnateDB links to Cerebral
- InnateDB: facilitating systems-level analyses of the mammalian innate immune response

Data cleansing example
- incorrect edge across many compartments
 - in well studied dataset
 - not obvious with other layouts

Cerebral summary
- supports interactive exploration of multiple experimental conditions in graph context
- provides familiar representation by using biological metadata to guide graph layout

Phylogenetic (evolutionary) tree

Common dataset size today

Future goal: Full Tree of Life, ~10M nodes

Outline
- visualization ideas and background
 - combining interaction networks, microarray data
 - Cerebral system
 - comparing phylogenetic trees
 - TreeJuxtaposer system

Encoding and interaction design decisions
- guaranteed visibility of small marks
 - scaling up to millions of nodes

Operation: Comparing multiple trees video
- stretch and squish navigation
- linked side by side comparison

Limitations of paper: Scale and speed
- literal: actual paper
- figurative: interfaces with same semantics as paper
 - need to focus on details yet maintain context

TreeJuxtaposer
- collaboration with biologists at UT-Austin Hillis Lab
- Scalable Tree Comparison using Focus+Context with Guaranteed Visibility
 - http://innatedb.ca
 - http://olduvai.sourceforge.net/tj

Adoption by biologists

InnateDB summary
- InnateDB: facilitating systems-level analyses of the mammalian innate immune response

Future goal: Full Tree of Life, ~10M nodes
- InnateDB: facilitating systems-level analyses of the mammalian innate immune response
Guaranteed visibility
- marks are always visible
 - structural differences, search results, user selections
- easy with small datasets
 - regions of interest shown with color highlights

Guaranteed visibility challenges
- hard with larger datasets
- reasons a mark could be invisible
 - mark outside the window
 - solution: constrained navigation
 - mark underneath other marks
 - solution: use 2D not 3D layout
 - mark smaller than a pixel
 - solution: smart culling

Constrained navigation for visibility
- stretch and squish navigation
 - stretch out part of surface, the rest squishes
 - borders nailed down
 - integrated focus and context
- items never fall outside camera
 - but squished regions can have many items per pixel

Smart culling for small item visibility
- naive culling does not draw all marked items
 - graphics cards optimized for realism: small items far away and thus not important
 - rendering infrastructure for visualization semantics: small items might be critical!

Guaranteed visibility benefits
- with GV
 - no mark is visible means no need to explore area further
 - without GV
 - risk of false negative conclusions, or
 - user must do tedious exhaustive search to ensure nothing missed
- algorithm scalability challenge
 - rendering complexity based on number of onscreen pixels
 - not total number of items in dataset

TJ summary
- first interactive tree comparison system
 - automatic structural difference computation
 - guaranteed visibility of small marks
- scalable to large datasets
 - 250K to 500K total nodes: original
 - up to 4M nodes: later, with PRISAD
 - subquadratic preprocessing
 - sublinear realtime rendering
 - depends on number of pixels, not number of nodes

More information
- this talk
 http://www.cs.ubc.ca/~tmm/talks.html#eindhoven09
- papers, videos
 http://www.cs.ubc.ca/~tmm
- software
 http://olduvai.sourceforge.net/tj
 http://www.pathogenomics.ca/cerebral
 http://www.innatedb.ca