Dimensionality Reduction From Several Angles

Tamara Munzner
Department of Computer Science
University of British Columbia

SCI Distinguished Lecture
University of Utah
15 Feb 2013

http://www.cs.ubc.ca/~tmm/talks.html#utah13
Dimensionality Reduction

• what is it?
  – map data from high-dimensional measured space into low-dimensional target space

• when to use it?
  – when you can’t directly measure what you care about
    • true dimensionality of dataset conjectured to be smaller than dimensionality of measurements
    • latent factors, hidden variables
DR Example

Tumor Measurement Data

9 Dimensional Measured Space

→ DR →

Malignant

Benign

2 Dimensional Target Space
Dimensionality Reduction

• why do people do DR?
  – improve performance of downstream algorithm
    • avoid curse of dimensionality
  – data analysis
    • if look at the output: visual data analysis
Angles of Attack

• design algorithms
• design systems
• design tools to solve real-world user problems
• evaluate/validate all of these
• create taxonomies to characterize existing things

• benefits of multiple angles
  – parallax view of what’s important
  – outcomes cross-pollinate
Questions: A Progression

• can we design DR algorithms/techniques that are better than previous ones?
• can we build a DR system that real people use?
• when do people need to look at DR output?
  – how can we figure out what people need?
• how should people look at DR output?
  – how can we tell if we’re drawing the right picture?
  – do metrics match up with human perception?
• why and how do people use DR?
Even More Questions

• open questions
  – how are real people actually using DR tools/techniques?
    • does it match up with what we think/hope/assert/assume?
  – why are they using it?
    • what are their goals and tasks, at abstract level?
  – is it working?
    • how do their goals match up with implicit assumptions behind different benchmarks?
    • do current state of the art tools meet their needs?
Dimensionality Reduction In the Wild

Tasks and Challenges

joint work with:
Michael Sedlmair, Matthew Brehmer, Stephen Ingram

work in progress
Two-Year Cross-Domain Qualitative Study

• **in the wild**
  – HCI term for work in the field with real users
    • vs controlled lab setting

• interviewed two dozen high-dim data analysts
  – across over a dozen domains and past several years

• final results coming soon
  – taxonomy of abstract tasks for DR
  – identified significant unmet user needs

• **why and how do people use DR?**
  – overarching question weaving through projects in this talk
  – preliminary results from study informed many of them
Questions and Answers

• can we design DR algorithms/techniques that are better than previous ones?
• can we build a DR system that real people use?
• when do people need to look at DR output?
• how should people look at DR output?
• why and how do people use DR?

• so... how do we answer these questions?
  – many validation methods to choose from!
A Nested Model of Visualization Design and Validation


Four Levels of Design and Validation

- four levels of design problems
  - different threats to validity at each level
  
  **Problem Characterization:**
  you misunderstood their needs

  **Data/Task Abstraction:**
  you’re showing them the wrong thing

  **Visual Encoding / Interaction Techniques:**
  the way you show it doesn’t work

  **Algorithm:**
  your code is too slow
Matching Validation With Design Level

threat: wrong problem
validate: observe and interview target users

threat: bad data/operation abstraction
threat: ineffective encoding/interaction technique
validate: justify encoding/interaction design
threat: slow algorithm
validate: analyze computational complexity
implement system
validate: measure system time/memory
validate: qualitative/quantitative result image analysis
 validate: lab study, measure human time/errors for operation
validate: test on target users, collect anecdotal evidence of utility
validate: field study, document human usage of deployed system
validate: observe adoption rates
Where Do We Go From Here?

• no single paper includes all methods of validation
  – pick methods based on angle of attack

• in this talk
  – cover many different methods and kinds of questions they can help with answering
Outline

- can we design better DR algorithms?
- can we build a DR system for real people?
- how should we show people DR results?
- when do people need to use DR?
Outline

• can we design better DR algorithms?
  – algorithm for GPU MDS: Glimmer
  – algorithm for MDS with costly distances: Glint

• can we build a DR system for real people?
• how should we show people DR results?
• when do people need to use DR?
Glimmer
Multilevel MDS on the GPU

joint work with:
Stephen Ingram, Marc Olano

http://www.cs.ubc.ca/labs/imager/tr/2008/glimmer/

Glimmer: Multilevel MDS on the GPU.
MDS: Multidimensional Scaling

• entire family of methods, linear and nonlinear
• classical scaling: minimize strain
  – Nystrom/spectral methods: \( O(N) \)
    • Landmark MDS [de Silva 2004], PivotMDS [Brandes & Pich 2006]
  – limitations: quality for very high dimensional sparse data
• distance scaling: minimize stress
  – nonlinear optimization: \( O(N^2) \)
    • SMACOF [de Leeuw 1977]
  – force-directed placement: \( O(N^2) \)
    • Stochastic Force [Chalmers 1996]
    • limitations: quality problems from local minima
• Glimmer goal: \( O(N) \) speed and high quality
Glimmer Strategy

- Stochastic force alg suitable for fast GPU port
  - but systematic testing shows it often terminates too soon

- Use as subsystem within new multilevel GPU alg with much better convergence properties
Sparse Dataset (docs): N=D=28K

- quality higher
- speed equivalent

Glimmer

Pivot MDS

16.64 s  stress=0.157
2.17 s  stress=0.928

Normalized Stress (Log)

Cardinality

Time (s)

Cardinality
Methods and Outcomes

• methods
  – quantitative algorithm benchmarks: speed, quality
    • systematic comparison across 1K-10K instances vs a few spot checks
  – qualitative judgements of layout quality

• outcomes
  – characterized kinds of datasets where technique yields quality improvements

• then what?
  – saw what real users could do with it after release
    • identified limitations
Glint
An MDS Framework for Costly Distance Functions

joint work with:
Stephen Ingram

http://www.cs.ubc.ca/labs/imager/tr/2012/Glint/

Glint: An MDS Framework for Costly Distance Functions.
MDS Algorithm Speeds

- newer algorithms linear, but...

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Author/Year</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classic MDS</td>
<td>Torgersen ‘52</td>
<td>O(N^3)</td>
</tr>
<tr>
<td>SMACOF</td>
<td>de Leeuw ‘77</td>
<td>O(N^3)</td>
</tr>
<tr>
<td>Pivot MDS</td>
<td>Brandes ‘07</td>
<td>O(kN)</td>
</tr>
<tr>
<td>Glimmer</td>
<td>Ingram ‘09</td>
<td>O(cN)</td>
</tr>
<tr>
<td>LAMP</td>
<td>Joia ‘11</td>
<td>O(kN)</td>
</tr>
</tbody>
</table>
MDS Speed on Coordinate Data

shuttle benchmark
N = 43K
D = 9

- time to calculate distance between two points
  - 0.00001 second

<table>
<thead>
<tr>
<th>Classic MDS</th>
<th>SMACOF</th>
<th>Pivot MDS</th>
<th>Glimmer</th>
<th>LAMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours</td>
<td></td>
<td>1 Second</td>
<td></td>
<td></td>
</tr>
<tr>
<td>to Compute</td>
<td></td>
<td>to Compute</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Classic MDS

SMACOF

Pivot MDS

Glimmer

LAMP
MDS Speed on Distance Matrix Data

- time to calculate distance between two points
  - 0.01 second

flickr benchmark
N = 1925
d = EMD
MDS Input: Coordinates vs Distances

- some systems intrinsically require coordinates
  - fundamental to LAMP speedup approach
- some handle both
  - including Glimmer
Costly Distances

- DR in the Wild revealed many real-world examples

<table>
<thead>
<tr>
<th>Distance function</th>
<th>Cost (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheap</td>
<td></td>
</tr>
<tr>
<td>Euclidean on 9-D data</td>
<td>0.00001</td>
</tr>
<tr>
<td>Database Query</td>
<td>0.001</td>
</tr>
<tr>
<td>Costly</td>
<td></td>
</tr>
<tr>
<td>Earth Mover Distance</td>
<td>0.01</td>
</tr>
<tr>
<td>Euclidean on 4M-D data</td>
<td>1.0</td>
</tr>
<tr>
<td>Human-in-the-loop</td>
<td>10.0</td>
</tr>
</tbody>
</table>
Glint Framework

- calculate as few distances as possible, maintain quality
- three-stage architecture
Glint Instantiations

- framework accommodates broad spectrum of algorithm types
  - three instantiations provided

<table>
<thead>
<tr>
<th>MDS Algorithm Type</th>
<th>Chosen Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gradient-based Optimization</td>
<td>SMACOF</td>
</tr>
<tr>
<td>Spectral/Analytic</td>
<td>Pivot MDS</td>
</tr>
<tr>
<td>Force-Directed</td>
<td>Glimmer</td>
</tr>
</tbody>
</table>
Force-Directed Instantiation Results

**Speed**

<table>
<thead>
<tr>
<th></th>
<th>MOLECULE</th>
<th>CONCEPT</th>
<th>FLICKR</th>
<th>BRDF</th>
<th>VIDEOGAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheap</td>
<td><img src="cheap_bar_chart.png" alt="Bar Chart" /></td>
</tr>
<tr>
<td>Costly</td>
<td><img src="costly_bar_chart.png" alt="Bar Chart" /></td>
</tr>
</tbody>
</table>

**Quality**

- Glimmer Original
- Glimmer w/ Glint

**major speed improvements while quality maintained**
Methods and Outcomes

• methods
  – algorithm benchmarks

• outcomes
  – dataset characterization different from previous work motivated by needs of real-world users
  – characterized distance metrics where architecture yields speed improvements

• then what?
  – keep talking to real users as way to discover more unmet needs
Outline

• can we design better DR algorithms?
  – next: how do we get people to use DR properly?
  – move emphasis from solo algorithms to entire system

• can we build a DR system for real people?
  – system that provides guidance: DimStiller

• when do people need to use DR?
• how should we show people DR results?
• why and how do people use DR?
DimStiller

Workflows for Dimensional Analysis and Reduction

joint work with:
Stephen Ingram, Veronika Irvine, Melanie Tory, Steven Bergner, Torsten Möller


Who Might Use DR?

- DR in the Wild revealed broad set of users

Math / Stats

Data Knowledge
Who Might Use DR?

Math / Stats

- Best Paper at NIPS
- Took Stats in Undergrad
- What’s a mean?

Data Knowledge
Who Might Use DR?

Math / Stats

Data Knowledge

Total Information Awareness

Dropped in lap
Who Might Use DR?

Math / Stats

Pedagogical

Data Knowledge
Who Might Use DR?

Math / Stats

Don’t Need Analysis

Data Knowledge

Math / Stats

Don’t Need Analysis

Data Knowledge
Who Might Use DR?

Math / Stats

Data Knowledge

Well Defined Tasks
Who Might Use DR?

- middle ground users benefit from guidance
Global Guidance

Operator Space

Sloppy, Misunderstood

Compact, Evocative
Global Guidance

Sloppy, Misunderstood

PCA

Variance

Correlation

MDS

SPLOM

Operator Space

Compact, Evocative

http://www.statmethods.net/advgraphs/images/corrgram3.png
http://en.wikibooks.org/wiki/File:Scree_plot_for_the_initial_dataset_Figure_36.jpg
http://www.iconfinder.com/icontdetails/44818/400/data_filter_icon?r=1
http://www.personality-project.org/R/
Global Guidance

- which operations and in which order?
Local Guidance

• what to do with a given operator?

Sloppy, Misunderstood

Compact, Evocative

Operator Space

How many principal components?

What do they mean?

PCA

Correlation

Variance

MDS

SPLOM

Filter

http://www.statmethods.net/advgraphs/images/corrgram3.png
http://en.wikibooks.org/wiki/File:Scree_plot_for_the_initial_dataset_Figure_36.jpg
DimStiller

- pre-built workflows
- sequence of operators
- local guidance for each operator
  - example: estimate true dimensionality with scree plot
Methods and Outcomes

• methods
  – usage scenarios: workflows
    • identified several (preliminary DRITW results)
    • built system to accommodate new ones as they’re uncovered

• outcomes
  – prototype system: “DR for the rest of us”

• then what?
  – who else needs guidance? not just end users!
Outline

• can we design better DR algorithms/techniques?
• can we build a DR system for real people?

  – **next: more guidance about visual encoding**

• how should we show people DR results?
  – visual encoding guidance for system developers: Points vs Landscapes
  – visual encoding guidance for metric developers wrt human perception: Visual Cluster Separation Factors

• when do people need to use DR?
Spatialization Design

Comparing Points and Landscapes

joint work with:
Melanie Tory, David W. Sprague, Fuqu Wu, Wing Yan So

Information Landscapes

- 2D or 3D landscape from set of DR points
  - height based on density
- oddly popular choice in DR
  - despite known occlusion/distortion problems with 3D
  - assertions: pattern recognition, spatial reasoning, familiar

Themescape:
[http://www.k-n-o-r-z.de/publ/example/retriev1.htm]

Understanding User Task

- abstract: search involving spatial areas and estimation

  Estimate which grid cell has the most points of the target color

- domain-specific examples

  “Where in the display are people with high incomes?”
  “Does this area also have high education levels?”
  “Does this area correspond to a particular work sector?”

- non-trivial complexity yet fast response time

- frequent subtask in pilot test of real data analysis
Lab Study: Test Human Response Time and Error

- hypotheses
  - points are better than landscapes
    - result: yes!
    - much better: 2-4 × faster, 5-14 × more accurate
  - 2D landscapes (color only) better than 3D landscapes (color + height redundantly encoded)
    - result: yes
    - significantly faster, no significant difference in accuracy
Methods and Outcomes

• methods
  – lab study: controlled experiment

• outcomes
  – prescriptive advice at visual encoding level
    • avoid 3D landscapes

• then what?
  – yet more guidance from user studies? not so fast...
A Taxonomy of Visual Cluster Separation Factors

joint work with:
Michael Sedlmair, Andrada Tatu, Melanie Tory

http://www.cs.ubc.ca/labs/imager/tr/2012/VisClusterSep/
Cluster Separation

• simple idea

![Cluster Separation Diagram]

- **full overlap**
- **partial overlap**
- **adjacent**
- **separate**
- **distant**

- **shape**
  - narrow
  - many

- **shape**
  - uniform
  - few
  - one

- **class/point**
  - few classes
  - many points
  - many classes
  - few points

- **mixture**
  - interwoven
  - random

- **split**
  - contiguous
  - split

- **within-class factors**
- **between-class factors**
Visual Cluster Separation Measures

- Many cluster separation measures proposed for semi-automatic guidance in high-dim data analysis

Sips et al.: Selecting good views of high-dimensional data using class consistency [EuroVis 2009]

Tatu et al.: Combining automated analysis and visualization techniques for effective exploration of high-dimensional data [VAST 2009]

Good!
Visual Cluster Separation Measures

• goal: number captures whether human looking at layout sees something interesting
  – after computation is done, not to refine clustering

• measures checked with user studies

  Tatu et al.: Visual quality metrics and human perception: an initial study on 2D projections of large multidimensional data [AVI 2010]

• but our attempt to use for guidance showed problems

![Image of R2-D2]  

→ ![Image of R2-D2 split]  

→ Good!

No!
User vs. Data Study

- **user study**
  - previous work on validating cluster measures
  - many users, few datasets
  - missing: dataset variety

- **data study**
  - few users, many datasets
816 Dataset Instances

• 75 datasets
  – 31 real, 44 synthetic
  – pre-classified

• 4 DR methods
  – PCA
  – Robust PCA
  – Glimmer MDS
  – t-SNE

• 3 visual encoding methods
  – 2D scatterplots, 3D scatterplots, 2D SPLOMs
  – color-coded by class
Centroid Measure

Centroid: 93

Good!
Bad!
Analysis Approach

• qualitative method out of social science: coding
  – open coding: gradually build/refine code set
  – axial coding: relationships between categories


• evaluating the measures
  – metric aligns with human judgement?
  – if not: what are the reasons?
Qualitative Analysis I: Cluster Separation Factors

outlier | shape | split | equidistant points
Analysis Approach

• qualitative method out of social science: coding
  – open coding: gradually build/refine code set
  – axial coding: relationships between categories


• evaluating the measures
  – metric aligns with human judgement?
  – if not: what are the reasons?

• building taxonomy of factors from reasons
• mapping measure failures onto taxonomy
A Taxonomy of Cluster Separation Factors

**Within-Class Factors**

- **Count**
  - few → many
- **Size**
  - small → large
- **Density**
  - sparse → dense
- **Clumpiness**
  - uniformly random → densely packed
- **Outlier**
  - none → many
- **Shape**
  - narrow → curvy
- **Isotropy**
  - round
- **Centroid**
  - evocative → misleading

**Between-Class Factors**

- **Class/Point Count**
  - few classes → many points
- **Variance of Count**
  - similar → different
- **Variance of Size**
  - similar → different
- **Variance of Density**
  - similar → different
- **Mixture**
  - random → equidistant → interwoven
- **Split**
  - contiguous → split
- **Variance of Shape**
  - similar → different
- **Inner-Outer Position**
  - non-existent → existent
- **Class Separation**
  - full overlap → partial overlap → adjacent → separate → distant

**Variance**

- From within-class to between-class factors.
High-Level Results

- **Failure cases**
- **Ok**

**All (816)**

**Only real (296)**

**False Positives**
- **False Negatives**

**All failure cases**
Centroid Failure Example

• big classes overspread small ones

Red: **77** (Good)
Problem: **FP**

Data: Gaussian, synthetic
DR: MDS
# Relevant Taxonomy Factors

## Within-Class Factors

<table>
<thead>
<tr>
<th>Factor</th>
<th>Value</th>
<th>Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Count</td>
<td>few</td>
<td>many</td>
</tr>
<tr>
<td>Size</td>
<td>small</td>
<td>large</td>
</tr>
<tr>
<td>Density</td>
<td>sparse</td>
<td>dense</td>
</tr>
<tr>
<td>Clumpiness</td>
<td>equidistant</td>
<td>uniformly random</td>
</tr>
<tr>
<td>Outlier</td>
<td>none</td>
<td>many</td>
</tr>
<tr>
<td>Shape</td>
<td>narrow</td>
<td>curvy</td>
</tr>
<tr>
<td>Isotropy</td>
<td>round</td>
<td></td>
</tr>
<tr>
<td>Centroid</td>
<td>evocative</td>
<td>misleading</td>
</tr>
</tbody>
</table>

## Between-Class Factors

<table>
<thead>
<tr>
<th>Factor</th>
<th>Value</th>
<th>Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class/Point</td>
<td>few classes</td>
<td>many classes</td>
</tr>
<tr>
<td>Count</td>
<td>many points</td>
<td>few points</td>
</tr>
<tr>
<td>Variance of</td>
<td>similar</td>
<td>different</td>
</tr>
<tr>
<td>Count</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variance of</td>
<td>similar</td>
<td>different</td>
</tr>
<tr>
<td>Density</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mixture</td>
<td>random</td>
<td>equidistant</td>
</tr>
<tr>
<td>Split</td>
<td>contiguous</td>
<td>split</td>
</tr>
<tr>
<td>Variance of</td>
<td>similar</td>
<td>different</td>
</tr>
<tr>
<td>Shape</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class Separation</td>
<td>non-existent</td>
<td>existent</td>
</tr>
<tr>
<td>Position</td>
<td>distant</td>
<td>adjacent</td>
</tr>
</tbody>
</table>

---

**Class Separation**: full overlap, partial overlap, adjacent, separate, distant
Centroid: Mapping Assumptions Into Taxonomy

• centroid only reliable if
  – round-ish clusters
  – not more than one dense spot
  – no outliers
  – similar sizes & number of points

• rarely true for real datasets
Related Work

Methods and Outcomes

• methods
  – qualitative data study
    • we encourage more work along these lines

• outcomes
  – taxonomy to understand current problems
    • measures
  – taxonomy to advise future development
    • measures, techniques, systems

• then what?
  – from how to help them do DR better
to understanding when they need to do it at all
Outline

• how can we design better DR algorithms/techniques?
• how can we build a DR system for real people?
• how should we show people DR results?

– next: continue figuring out what people need

• when do people need to use DR?
  – sometimes they don’t: QuestVis
  – how to figure out when they do or don’t: Design Study Methodology
Reflections on QuestVis: A Visualization System for an Environmental Sustainability Model

joint work with: Aaron Barsky, Matt Williams

http://www.cs.ubc.ca/labs/imager/tr/2011/QuestVis/

Reflections on QuestVis: A Visualization System for an Environmental Sustainability Model
Application Domain: Sustainability

• user data: sustainability simulation model
  – high-dimensional inputs/outputs
  • our decision: show relationship between input choices and output indicators with linked views including DR layout
Hammer Looking for A Nail

• wrong task abstraction: they didn’t need DR!
  – goal mismatch
    • discussion of issues and behavior change from general public
    • not data analysis to understand exact relationships between input and output variables
  – this failure case was one of motivations for nested model

• how can we tell what users actually need?
  – talking to users: necessary but not sufficient
  – we now have some answers!
    • we have proposed a methodology for problem-driven research
      – design studies: build vis tools to solve user problems
      – DR as one of many possible techniques that might be used
Design Study Methodology: Reflections from the Trenches and from the Stacks

joint work with:
Michael Sedlmair, Miriah Meyer

http://www.cs.ubc.ca/labs/imager/tr/2012/dsm/
Design Studies

• long and winding road with many pitfalls
  – reflections after doing 21 of them
  • many successes, a few failures, many lessons learned
How To Do Design Studies

• definitions

• 9-stage framework

• 32 pitfalls and how to avoid them
Pitfall Example: Premature Publishing

- technique-driven
- problem-driven

**Must be first!**

**Am I ready?**


http://www.alaineknipes.com/interests/violin_concert.jpg
Methods and Outcomes

• methods
  – introspection on lessons learned as authors and reviewers
  – extensive literature search

• outcomes
  – prescriptive methodology advice
    • here’s a way to do design studies
    • avoid these pitfalls

• exhortation
  – meta/how-to/reflection papers are worth doing
  – thinking about methods and methodologies is fruitful for any flavor of research!
Work in Progress

• DR in the Wild
  – final results coming soon

• DR for journalism
  – Overview project http://overview.ap.org
  – funded by Knight Foundation, collaboration with Stray@AP
    • starting point: Glimmer meets WikiLeaks
      – led us to identify and address more unmet real-world analysis needs
      – new technique developed and partially deployed
    • end point: stay tuned
Conclusions

• cross-fertilization from attacking DR through different methodological angles
  – scratching own itches often leads to problems that are important and high impact
    • outcomes of evaluation informs how to build
    • grappling with issues of building informs what studies to run
    • taxonomy creation informs what to build: unsolved problems

• finding mismatches
  – between principles and practice
  – between practice and needs
    • need parallax view of principles, practices, and needs!
Thanks and Questions

• further info
  – http://www.cs.ubc.ca/~tmm/talks#utah13
  – http://www.cs.ubc.ca/~tmm/papers

• acknowledgements
  – funding: NSERC Strategic Grant
  – joint work: all collaborators
    • Aaron Barsky, Steven Bergner, Matthew Brehmer, Stephen Ingram, Veronika Irvine, Miriah Meyer, Torsten Möller, Marc Olano, David W. Sprague, Melanie Tory, Michael Sedlmair, Wing Yan So, Andrada Tatu, Matt Williams, Fuqu Wu
  – feedback on this talk
    • Matthew Brehmer, Joel Ferstay, Stephen Ingram, Torsten Möller, Michael Sedlmair, Jessica Dawson

• hiring opportunity
  – Stephen Ingram (DimStiller, Glimmer, Glint) will finish PhD soon
  – http://www.cs.ubc.ca/~sfingram
  – available for hacker-analyst job in industry or research lab
    • in spring 2014 after postdoc