Variant View

Visualizing Sequence Variants in their Gene Context

Tamar Munzner
Department of Computer Science
University of British Columbia

BioIT World, Data Visualizations and Exploratory Tools - Talk
20April 2014 Boston MA

http://www.cs.ubc.ca/~tmm/talks.html#bioit14

Variant View: Visualization Design Study

• a specific real-world problem
 real users and real data
 collaboration (often) fundamental
design a visualization system
 implications: requirements, multiple ideas
validate the design
 at appropriate levels

• reflect about lessons learned
 translatable research improve design guidelines for vis in general
 confirm, refine, repeat, propose

- Exons
- Gene
- Transcript
- Protein
- Genome
- Translation
- Protein Regions

How To Do Design Studies

• definitions

9-stage framework

• 32 pitfalls and how to avoid them

When To Do Design Studies

INFORMATION LOCATION

computerhead

TASK CLARITY

fuzzy crisp

NOT ENOUGH DATA

DESIGN STUDY METHODOLOGY

SUITEABLE

ALGORITHM

POSSIBLE

Variant View

Visualizing Sequence Variants in their Gene Context

Cancer Research

• collaboration with analysts at BC Genome Sciences Center
 analyzing genetic basis of leukemia
 driving task
 discover new candidate genes with harmful variants
 two big questions
 what to show
 how to show it
 visual encoding idiom

Selectivity for representations cross-cuts domains!

Reference Genome DNA: ATG TCA ACA CTT

Sample 1 Genome DNA: ATG TGC ACA CTT

Sample 2 Genome DNA: ATG TCA ACA CTT

Abstractions and Idioms

• abstractions
 translate from specifics of domain to vocabulary of vis
 task abstraction: why they are looking at it
 data abstraction: what to draw
 transform data into forms useful for task at hand
 don’t just draw what you’re given; decide what is the right thing!

• idioms
 visual encoding idiom: how to draw
 interaction idiom: how to manipulate

• focus today: two mappings
 from domain to abstraction
 from abstraction to idiom

Option 1: DNA visualization

Option 2: Protein visualization

Option 3: RNA visualization

Sequence Variant Definition

• difference between reference and given genome

Reference Genome DNA: ATG TCA ACA CTT

Sample 1 Genome DNA: ATG TGC ACA CTT

Sample 2 Genome DNA: ATG TCA ACA CTT

Data: Filtering to relevant biological levels and scales

Abstractions

Data abstraction

• from specifics of domain to vocabulary of vis

Validation

• personal
• outward-facing

Design Study Methodology

Reflections from the Trenches and from the Stacks

Design Study Methodology

• a specific real-world problem
 real users and real data
 collaboration (often) fundamental
design a visualization system
 implications: requirements, multiple ideas
validate the design
 at appropriate levels

• reflect about lessons learned
 translatable research improve design guidelines for vis in general
 confirm, refine, repeat, propose

- Exons
- Gene
- Transcript
- Protein
- Genome
- Translation
- Protein Regions

Data abstraction:

• horizontal tracks: user data
• shared coordinate system: genome coordinate (bp)

Problems

- Idiosyncrasies of interest spread out across largeextent
- must zoom in to see exons, known features
- must zoom out to see human scale
- high cognitive load for interactions
- must already know where to look

Variant View

Visualizing Sequence Variants in their Gene Context

Cancer Research

• collaboration with analysts at BC Genome Sciences Center
 analyzing genetic basis of leukemia
 driving task
 discover new candidate genes with harmful variants
 two big questions
 what to show
 how to show it
 visual encoding idiom

Selectivity for representations cross-cuts domains!

Reference Genome DNA: ATG TCA ACA CTT

Sample 1 Genome DNA: ATG TGC ACA CTT

Sample 2 Genome DNA: ATG TCA ACA CTT

Abstractions and Idioms

• abstractions
 translate from specifics of domain to vocabulary of vis
 task abstraction: why they are looking at it
 data abstraction: what to draw
 transform data into forms useful for task at hand
 don’t just draw what you’re given; decide what is the right thing!

• idioms
 visual encoding idiom: how to draw
 interaction idiom: how to manipulate

• focus today: two mappings
 from domain to abstraction
 from abstraction to idiom

Option 1: DNA visualization

Option 2: Protein visualization

Option 3: RNA visualization

Sequence Variant Definition

• difference between reference and given genome

Reference Genome DNA: ATG TCA ACA CTT

Sample 1 Genome DNA: ATG TGC ACA CTT

Sample 2 Genome DNA: ATG TCA ACA CTT

Data: Filtering to relevant biological levels and scales

Abstractions

Data abstraction

• from specifics of domain to vocabulary of vis

Validation

• personal
• outward-facing

Design Study Methodology

Reflections from the Trenches and from the Stacks

Design Study Methodology

• a specific real-world problem
 real users and real data
 collaboration (often) fundamental
design a visualization system
 implications: requirements, multiple ideas
validate the design
 at appropriate levels

• reflect about lessons learned
 translatable research improve design guidelines for vis in general
 confirm, refine, repeat, propose

- Exons
- Gene
- Transcript
- Protein
- Genome
- Translation
- Protein Regions

Data abstraction:

• horizontal tracks: user data
• shared coordinate system: genome coordinate (bp)

Problems

- Idiosyncrasies of interest spread out across largeextent
- must zoom in to see exons, known features
- must zoom out to see human scale
- high cognitive load for interactions
- must already know where to look
Side-by-side comparison: MuSiC vs Variant View

Protein regions can overlap
Regions get separate lanes

Large bloom of repeated elements: more salient

Results

Verify known leukemia gene: Highly scored by sorting metric

Visual inspection reveals collocation of variants
Several functional protein regions affected

Highly scored by metric: not previously known, good candidate

In contrast, low scoring gene
No collocation of variants
Mostly unaffected protein regions

Additional tasks
• task 2: compare patients
 – clinical setting application
 – compare patient data to known harmful variants
 – challenge
 • similarity is loosely understood rather than fully characterized
 • visual inspection for what constitutes a match

Adapted Variant View with minimal changes
Navigate through patient data with list
Patient data emphasized with arrows
Patient has same harmful L to P mutation
Nonmatching variants

Additional tasks
• task 3: debug pipeline
 – data cleaning before analysis
 – analysts originally thought pipeline fully debugged
 – no perceived need for vis support

Tool revealed errors in the data
• The tool exposed artifacts in the data that slid past at least two rounds of quality metric filtering … this type of problem would not have been caught by our previous, automated methods.
 - Analyst 3

Reflections: vis design guidelines
• transferrable to other domains
 – specialize first, generalize later
• good for domains where with complex, multi-scale data
 – difficult to judge a priori which design elements will generalize
• high-level considerations
 – identifying scales of interest
 – what to visually encode directly vs what to support through interaction
 – when (and how) to abstract/visualize

Conclusions
• visual variant impact assessment
 – designed, implemented, and deployed tool for
 – originally designed for Discover Genes task
 – adapted to two others with minimal changes
• features
 – navigation-free main overview at gene level
 – reveal genes of interest through sorting by new derived metrics
• major considerations
 – what to show
 • filtering data scope
 – how to show it
 • carefully selected visual encodings

Further Information
• paper page
• open source software download
• further info
 – http://www.cs.ubc.ca/~tmm/talks.html#bioit14 (this talk, and many others)
 – http://www.cs.ubc.ca/group/infovis (papers, software, videos)
• acknowledgements
 – funding: Vancouver Institute for Visual Analytics (VIVA), Aeroinfo/Boeing, Mitacs
 – Dr. Aly Karsan
 – Rod Docking
 – Dr. Linda Chang
 – Dr. Gerben Duns
 – Simon Chang

•

Took revealed errors in the data
• The tool exposed artifacts in the data that slid past at least two rounds of quality metric filtering … this type of problem would not have been caught by our previous, automated methods.
 - Analyst 3

Reflections: vis design guidelines
• transferrable to other domains
 – specialize first, generalize later
• good for domains where with complex, multi-scale data
 – difficult to judge a priori which design elements will generalize
• high-level considerations
 – identifying scales of interest
 – what to visually encode directly vs what to support through interaction
 – when (and how) to abstract/visualize

Conclusions
• visual variant impact assessment
 – designed, implemented, and deployed tool for
 – originally designed for Discover Genes task
 – adapted to two others with minimal changes
• features
 – navigation-free main overview at gene level
 – reveal genes of interest through sorting by new derived metrics
• major considerations
 – what to show
 • filtering data scope
 – how to show it
 • carefully selected visual encodings

Further Information
• paper page
• open source software download
• further info
 – http://www.cs.ubc.ca/~tmm/talks.html#bioit14 (this talk, and many others)
 – http://www.cs.ubc.ca/group/infovis (papers, software, videos)
• acknowledgements
 – funding: Vancouver Institute for Visual Analytics (VIVA), Aeroinfo/Boeing, Mitacs
 – Dr. Aly Karsan
 – Rod Docking
 – Dr. Linda Chang
 – Dr. Gerben Duns
 – Simon Chang

•