Why do visualization?
- pictures help us think
 - substitute perception for cognition
 - external memory; free up limited cognitive/memory resources for higher-level problems

When should we bother doing vis?
- need a human in the loop
 - augment, not replace, human cognition
- simple summary not adequate
 - statistics may not adequately characterize complexity of dataset distribution

What does visualization allow?
- discovery vs. confirmation
 - discovering new things
 - hypothesis discovery, "aurelia moment"
 - confirming conjectured things
 - hypothesis confirmation
 - contradicting conjectured things
 - especially (inevitably?) data cleansing
- discovery vs. speedup
 - novel capabilities
 - tool supports fundamentally new operations
 - speedup
 - tool accelerates workflow (most common!)

Good driving problems for vis research
- need for humans in the loop
- big data
- reasonably clear questions
- many areas of science are a great match
 - biology particularly appealing

Cerebral video
- collaboration with researchers at UBC Hancock Lab studying innate immunity
- Cerebral: Visualizing Multiple Experimental Conditions on a Graph with Biological Context
 - Annapoorna, Computer Science, UBC
 - Tamara Munzner, Computer Science, UBC
 - Jennifer Gillies, Microbiology and Immunology, UBC

Model - Experiment cycle
- conduct experiments on cells
- interpret results in current graph model
- propose modifications to refine model
- vis tool to accelerate workflow?

Goal: Integrate model with measurements
- system model
 - interaction graph
 - G = (V, E)
 - meta-data for each v in V
 - labels, biological attributes
 - experimental measurements
 - multiple floats for each v in V
 - microarray data

Model summarizes extensive lab work
- graphs come from hand-curated databases
 - dynamic, change with each new publication
- each edge has provenance from experimental evidence
 - TIRAP: an adapter molecule in the Toll signaling pathway
 - Mal (MyD88-adapter-like) is required for Toll-like pathway
 - gene isolation
 - validation and characterization of the Toll-signaling pathway
 - Antenna-A, Antenna-B, Alum, B, Anima A, Argus A, Adult, B, Nerve A
 - pathology B, Adult, B, Bone A, leaf A, Nerve A

TLR4 biomolecule: E=74, V=54
- very local view

Immune system: E=1263, V=760
- bigger picture, target size for Cerebral

Human interactome: E~50,000, V~10,000
- too complex, beyond scope of tool

Encoding and interaction design decisions
- create custom graph layout
 - guided by biological metadata
- use small multiple views
 - one view per experimental condition
- show measured data in graph context
 - not in isolation

Choice 1: Create custom graph layout
- graph layout heavily studied
 - given graph G=(V,E), create layout in 2D/3D plane
 - hundreds of papers
 - annual Graph Drawing conference

Anscombe’s quartet: same
- mean
- variance
- correlation coefficient
- linear regression line

Human interactome: E≈50,000, V≈10,000
- too complex, beyond scope of tool
Existing layouts did not suit immunologists

- graph drawing goals
 - visualize graph structure
- biologist goals
 - visualize biological knowledge
 - some relationships happen to form a graph
 - cell location also relevant

Biological cells divided by membranes

- interactions generally occur within a compartment
- interaction location often known as part of model

Hand-drawn diagrams

- cellular location spatially encoded vertically
- inflexible to create by hand in era of big data

Cerebral layout using biological metadata

- similar to hand-drawn
- spatial position reveals location in cell
- simulated annealing in $O(E^{3/2})$ vs. $O(V^3)$ time

Choice 2: Use small multiple views

- one graph instance per experimental condition
 - same spatial layout
 - color differently, by condition
- why not measurements alone?
 - data driven hypothesis: gene expression clusters indicate similar function in cell?
 - clusters are often untrustworthy artifacts!
 - noisy data: different clustering alg. → different results
 - measured data alone potentially misleading
 - show in context of graph model

Why not animation?

- limits of human visual memory
 - compared to side by side visual comparison
- global comparison difficult

Choice 3: Show measurements and graph

- why not measurements alone?
 - data driven hypothesis: gene expression clusters indicate similar function in cell?
 - clusters are often untrustworthy artifacts!
 - noisy data: different clustering alg. → different results
 - measured data alone potentially misleading
 - show in context of graph model

Why not animation?

- limits of human visual memory
 - compared to side by side visual comparison
- global comparison difficult

Adoption by biologists

InnateDB links to Cerebral

Data cleansing example

- incorrect edge across many compartments
 - in well studied dataset
 - not obvious with other layouts

Cerebral summary

- supports interactive exploration of multiple experimental conditions in graph context
- provides familiar representation by using biological metadata to guide graph layout

More information

- this talk http://www.cs.ubc.ca/~tmm/talks.html#amw09
- papers, videos http://www.cs.ubc.ca/~tmm

Adoption by biologists

InnateDB links to Cerebral