Visualization (vis) defined & motivated

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

Visualization is suitable when there is a need to augment human capabilities rather than replace people with computational decision-making methods.
Nested model: Four levels of visualization design

- **domain situation**
 - who are the target users?

- **abstraction**
 - translate from specifics of domain to vocabulary of vis
 - **what** is shown? data abstraction
 - **why** is the user looking at it? task abstraction

- **idiom**
 - **how** is it shown?
 - visual encoding idiom: how to draw
 - interaction idiom: how to manipulate

- **algorithm**
 - efficient computation

Why is validation difficult?

- different ways to get it wrong at each level

- Domain situation
 You misunderstood their needs

- Data/task abstraction
 You’re showing them the wrong thing

- Visual encoding/interaction idiom
 The way you show it doesn’t work

- Algorithm
 Your code is too slow

Evaluation: broadly interpreted

- methods from many fields, qualitative & quantitative
 - controlled experiments in lab, field studies of deployed systems

anthropology/ethnography
design
computer science
HCI/psychology
anthropology/ethnography

Problem-driven work

• design studies
 – in collaboration with target users
 • real data, real tasks
 • intensive requirements analysis
 – iterative refinement
 • deploy tools/systems
 – typical evaluation: field studies

• my strategy: opportunistic collaboration
 – many domains
 – both industrial and academic partners
Problem-driven: Tech industry

SessionViewer: web log analysis
https://youtu.be/T4MaTZd56G4

Heidi Lam
(Google)

LiveRAC: systems time-series logs
https://youtu.be/ld0c3H0VSkw

Peter McLachlan
(AT&T Research)

Stephen North

Diane Tang
(Anonymous)
Problem-driven: Energy, sustainability

Vismon
https://youtu.be/h0kHoS4VYmk
Problem-driven: Genomics

Aaron Barsky (UBC Micro)

Jenn Gardy (Agilent)

Robert Kincaid (Agilent)

Miriah Meyer

Hanspeter Pfister (Harvard)

Cerebral
https://youtu.be/76HhG1FQngI

MizBee
https://youtu.be/86p7brwuz2g

MulteeSum, Pathline

https://youtu.be/76HhG1FQngI
Problem-driven: Genomics, journalism

Joel Ferstay
Cydney Nielsen
(BC Cancer)

Jonathan Stray
(Assoc Press)

Variant View
https://youtu.be/AHDnv_qMXxQ

Overview
https://vimeo.com/71483614
Problem-driven: Autos, e-commerce

RelEx (BMW)
https://youtu.be/89lsQXc6Ao4

Current work:
Mobify clickstream collaboration
Technique-driven work

• scalable algorithms & systems
 – typical evaluation: computational benchmarks

• new layout & interaction techniques
 – typical evaluation: controlled experiments on human subjects
Technique-driven: Graph drawing

Daniel Archambault (Bordeaux)

David Auber (Bordeaux)

TopoLayout
SPF
Grouse
GrouseFlocks
TugGraph

https://youtu.be/GdaPj8a9QEo
https://youtu.be/AWX Ae8zvkt8

Benjamin Renoust

Detangler
https://youtu.be/QOtnHSsUV6k

Guy Melançon (Bordeaux)

TreeJuxtaposer
https://youtu.be/GdaPj8a9QEo
Evaluation experiments: Graph drawing

Dmitry Nekrasovski Adam Bodnar Joanna McGrenere

Stretch and squish navigation

Jessica Dawson Joanna McGrenere

Search set model of path tracing
Technique: Dimensionality reduction

Stephen Ingram

Glimmer

DimStiller

Glint

QSNE
Evaluation experiments: Dim. reduction

Points vs landscapes for dimensionally reduced data

Guidance on DR & scatterplot choices

Taxonomy of cluster separation factors
Evaluation in the field: Dim. reduction

DR in the Wild

Matt Brehmer Michael Sedlmair Melanie Tory Stephen Ingram
Curation & Presentation: Timelines

TimeLineCurator
https://vimeo.com/123246662

Timelines Revisited
timelinesrevisited.github.io/

Johanna Fulda (Sud. Zeitung)

Matt Brehmer

Bongshin Lee (Microsoft)

Benjamin Bach (Microsoft)

Nathalie Henry-Riche (Microsoft)
Theoretical foundations

Papers Process & Pitfalls

Design Study Methodology

Michael Sedlmair Miriah Meyer

Nested Model

Abstract Tasks Matt Brehmer
Theoretical foundations

• book http://www.cs.ubc.ca/~tmm/vadbook

• papers, videos, software, talks, courses
 http://www.cs.ubc.ca/group/infovis
 http://www.cs.ubc.ca/~tmm

• grad course: CPSC 547
 • teaching now
 • final presentations Tue Dec 15
 • 1-5pm FSC 2330A
 • you’re invited!
 http://www.cs.ubc.ca/~tmm/courses/547-17F/
 projects.html

• on sabbatical next year
• ugrad course planned for Sep 2019

www.cs.ubc.ca/~tmm/talks.html#344-outro17

@tamaramunzner