InfoVis Group Research

Tamara Munzner
Department of Computer Science
University of British Columbia
CPSC 344 Outro
29 Nov 2017
http://www.cs.ubc.ca/~tmm/talks.html#344-outro17 @tamaramunzner

Technique-driven work
• scalable algorithms & systems
– typical evaluation: computational benchmarks
• new layout & interaction techniques
– typical evaluation: controlled experiments on human subjects

Evaluation: broadly interpreted
– methods from many fields, qualitative & quantitative
 – controlled experiments in lab, field studies of deployed systems

Domain situation
You misunderstood their needs
You’re showing them the wrong thing

Problem-driven work
• design studies
 – in collaboration with target users
 – real data, real tasks
 – intensive requirements analysis
 – iterative refinement
 – deploy toolkitsystems
 – typical evaluation: field studies

My strategy: opportunistic collaboration
– many domains
 – both industrial and academic partners

Evaluation experiments: Graph drawing
– typical evaluation: controlled experiments on human subjects

Technique-driven: Graph drawing
– scalable algorithms & systems
 – typical evaluation: computational benchmarks
 – new layout & interaction techniques
 – typical evaluation: controlled experiments on human subjects

Problem-driven: Genomics
– in collaboration with target users
– real data, real tasks
– intensive requirements analysis
– iterative refinement
– deploy toolkitsystems
– typical evaluation: field studies

Visualization (vis) defined & motivated
Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

Visualisation is suitable when there is a need to augment human capabilities rather than replace people with computational decision-making methods.

Nested model: Four levels of visualization design
• domain situation
 – who are the target users?
• abstraction
 – translate from specifics of domain to vocabulary of vis
 – what is shown? data abstraction
 – why is the user looking at it? task abstraction
• idiom
 – how is it shown?
 – visual encoding idiom: how to draw
 – interaction idiom: how to manipulate
• algorithm
 – efficient computation

Why is validation difficult?
• different ways to get it wrong at each level

Domain situation
You misunderstood their needs
Data/task abstraction
You’re showing them the wrong thing
Visual encoding/interaction idiom
The way you show it doesn’t work
Algorithm
Your code is too slow

Problem-driven: Tech industry

Technique-driven: Dimensionality reduction

Visualization (vis) defined & motivated
Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

Visualisation is suitable when there is a need to augment human capabilities rather than replace people with computational decision-making methods.

Nested model: Four levels of visualization design
• domain situation
 – who are the target users?
• abstraction
 – translate from specifics of domain to vocabulary of vis
 – what is shown? data abstraction
 – why is the user looking at it? task abstraction
• idiom
 – how is it shown?
 – visual encoding idiom: how to draw
 – interaction idiom: how to manipulate
• algorithm
 – efficient computation

Why is validation difficult?
• different ways to get it wrong at each level

Domain situation
You misunderstood their needs
Data/task abstraction
You’re showing them the wrong thing
Visual encoding/interaction idiom
The way you show it doesn’t work
Algorithm
Your code is too slow

Problem-driven: Genomics, journalism

Evaluation: broadly interpreted
– methods from many fields, qualitative & quantitative

Domain situation
You misunderstood their needs
You’re showing them the wrong thing
Visual encoding/interaction idiom
The way you show it doesn’t work
Algorithm
Your code is too slow

Problem-driven: Autos, e-commerce

Technique-driven work
• scalable algorithms & systems
 – typical evaluation: computational benchmarks
• new layout & interaction techniques
 – typical evaluation: controlled experiments on human subjects

Evaluation: broadly interpreted
– methods from many fields, qualitative & quantitative

Domain situation
You misunderstood their needs
You’re showing them the wrong thing

Problem-driven: Genomics

Problem-driven work
• design studies
 – in collaboration with target users
 – real data, real tasks
 – intensive requirements analysis
 – iterative refinement
 – deploy toolkitsystems
 – typical evaluation: field studies

My strategy: opportunistic collaboration
– many domains
 – both industrial and academic partners

Evaluation experiments: Graph drawing
– typical evaluation: controlled experiments on human subjects

Technique-driven: Graph drawing
– scalable algorithms & systems
 – typical evaluation: computational benchmarks
 – new layout & interaction techniques
 – typical evaluation: controlled experiments on human subjects

Problem-driven: Energy, sustainability

Technique-driven work
• scalable algorithms & systems
 – typical evaluation: computational benchmarks
• new layout & interaction techniques
 – typical evaluation: controlled experiments on human subjects

Evaluation: broadly interpreted
– methods from many fields, qualitative & quantitative

Domain situation
You misunderstood their needs
You’re showing them the wrong thing
Visual encoding/interaction idiom
The way you show it doesn’t work
Algorithm
Your code is too slow

Problem-driven: Autos, e-commerce

Problem-driven: Genomics, journalism

Problem-driven: Energy, sustainability

Problem-driven: Autos, e-commerce

Problem-driven: Genomics

Problem-driven work
• design studies
 – in collaboration with target users
 – real data, real tasks
 – intensive requirements analysis
 – iterative refinement
 – deploy toolkitsystems
 – typical evaluation: field studies

My strategy: opportunistic collaboration
– many domains
 – both industrial and academic partners

Evaluation experiments: Graph drawing
– typical evaluation: controlled experiments on human subjects

Technique-driven: Graph drawing
– scalable algorithms & systems
 – typical evaluation: computational benchmarks
 – new layout & interaction techniques
 – typical evaluation: controlled experiments on human subjects

Problem-driven: Energy, sustainability

Evaluation: broadly interpreted
– methods from many fields, qualitative & quantitative

Domain situation
You misunderstood their needs
You’re showing them the wrong thing
Visual encoding/interaction idiom
The way you show it doesn’t work
Algorithm
Your code is too slow

Problem-driven: Genomics

Problem-driven work
• design studies
 – in collaboration with target users
 – real data, real tasks
 – intensive requirements analysis
 – iterative refinement
 – deploy toolkitsystems
 – typical evaluation: field studies

My strategy: opportunistic collaboration
– many domains
 – both industrial and academic partners

Evaluation experiments: Graph drawing
– typical evaluation: controlled experiments on human subjects

Technique-driven: Graph drawing
– scalable algorithms & systems
 – typical evaluation: computational benchmarks
 – new layout & interaction techniques
 – typical evaluation: controlled experiments on human subjects

Problem-driven: Energy, sustainability

Technique-driven work
• scalable algorithms & systems
 – typical evaluation: computational benchmarks
• new layout & interaction techniques
 – typical evaluation: controlled experiments on human subjects

Evaluation: broadly interpreted
– methods from many fields, qualitative & quantitative

Domain situation
You misunderstood their needs
You’re showing them the wrong thing
Visual encoding/interaction idiom
The way you show it doesn’t work
Algorithm
Your code is too slow
Evaluation experiments: Dim. reduction

Michael Sedlmair
Melanie Tory

Points vs landscapes for dimensionally reduced data

Taxonomy of cluster separation factors

Guidance on DR & scatterplot choices

Evaluation in the field: Dim. reduction

Michael Sedlmair
Melanie Tory
Stephen Ingram
Matt Brehmer

DR in the Wild

Curation & Presentation: Timelines

Johanna Fulda
Melanie Tory
Stephen Ingram
Matt Brehmer

Timelines Revisited
timelinesrevisited.github.io/

Theoretical foundations

Michael Sedlmair
Miriah Meyer
Matt Brehmer

Visualization Analysis & Design

• book http://www.cs.ubc.ca/~tmm/vadbook
• papers, videos, software, talks, courses
 http://www.cs.ubc.ca/group/infovis
 http://www.cs.ubc.ca/~tmm
• grad course: CPSC 547
 • teaching now
 • final presentations Tue Dec 15
 • 1-5pm FSC 2330A
 • you’re invited!
 http://www.cs.ubc.ca/~tmm/CPSC547/17/
• on sabbatical next year
• undergrad course planned for Sep 2019
 www.cs.ubc.ca/~tmm/talks.html#344-outro17