
Ludwig-Maximilians-Universit

¨

at M

¨

unchen

Institute for Informatics

Media Informatics Group
Prof. Dr. Andreas Butz

Master Thesis

TimeLineCurator:
Interactive Authoring of Visual Timelines

from Unstructured Text

Johanna Fulda

johanna.fulda@campus.lmu.de

Time frame: 11 November 2014 to 15 May 2015
Advisor: Simon Stusak
Professors in charge: Prof. Dr. Andreas Butz (LMU München)

Prof. Tamara Munzner (University of British Columbia)

mailto:johanna.fulda@campus.lmu.de

Abstract

Interactive visualizations are popular elements inside digital news. In comparison to static
infographics, they engage the reader, promote interest, and can lead to a better under-
standing of complex issues. Timelines are one recurring form of interactive visualization.
They summarize events relating to a particular topic and give a quick overview of the
temporal progress of a story.

In this thesis, I investigated how timelines are created, compared timeline author-
ing tools and approaches, and the challenges that timeline authors face. Drawing from
interviews with journalists as well as my own experience of working in a newsroom for
three years, I envisioned automating parts of the timeline authoring process. Combining
methods from Natural Language Processing and Information Visualization, I developed
TimeLineCurator, a browser-based authoring tool. It automatically extracts events from
unstructured text and allows authors to easily and visually curate the extracted data. On
the one hand, the tool is meant to facilitate the creation of a timeline for presentation;
on the other hand, it can be used as a tool for analysis, since it enables a fast way to
determine whether a document contains temporal information, and if so, what timeframe
it relates to.

TimeLineCurator was evaluated by way of interviews and an analysis of usage scenarios
emanating from the journalism community. We also received positive feedback from a
broader prospective user community following the online deployment of TimeLineCurator,
which included ideas for extensions as well as integration with existing tools and workflows.

Zusammenfassung

Digitale Technologien ermöglichen es interaktive Visualisierungen innerhalb Online-
Nachrichtenseiten zu verwenden. Im Vergleich zu statischen Infografiken werden Leser
dabei dazu motiviert selbst Einfluss auf die Darstellung zu nehmen. Das kann zum
einen das Interesse des Lesers steigern, zum anderen sogar dazu führen, ein komplexes
Thema besser zu verstehen. Eine immer wieder auftauchende Form einer interaktiven
Visualisierung ist der Zeitstahl. Er fasst wichtige Ereignisse eines übergeordneten The-
mas zusammen und gibt dadurch einen guten Überblick über den zeitlichen Verlauf des
Themas.

Für meine Masterarbeit beschäftigte ich mich damit wie man einen Zeitstrahl erstellen
kann und welche unterschiedlichen Werkzeuge und Vorgehensweisen es für die Erstellung
gibt. Durch eigene Erfahrung, die ich während meiner Arbeit in einer Nachrichtenredak-
tion machte, und durch Gespräche mit Journalisten ermittelte ich auftretende Probleme
bei der Erstellung und überlegt wie man den Prozess vereinfachen könnte.

Mit maschineller Sprachverarbeitung und Techniken aus der Informationsvisualisierung
entwickelte ich ein browserbasiertes Programm, das frei formulierten Text automatisch
nach Zeitangaben durchsucht und gefundene Daten auf einem Zeitstrahl darstellt. Zum
einen ermöglicht es TimeLineCurator einfach und schnell einen Zeitstrahl zu erstellen.
Zum anderen kann TimeLineCurator aber auch zur Analyse eines Textdokuments einge-
setzt werden, da automatisch festgestellt wird, ob und welche zeitlichen Informationen ein
Dokument beinhaltet.

Wir führten Interviews und beobachteten Testanwender, um TimeLineCurator zu
evaluieren. Nachdem wir das Programm online zur Verfügung stellten, und dadurch
wesentlich mehr Leute erreichten, erhielten wir neben positiven Rückmeldungen auch
einige Ideen wie TimeLineCurator in Zukunft weiter entwickelt werden könnte.

Task

The creation of event timelines in a journalistic context should be facilitated. We propose
to use natural language processing to detect temporal expressions inside unstructured
text to generate a sca↵old of a timeline that is easily adjustable by the author afterwards,
in conjunction with the capability of visualizing the resulting temporal data in timeline
form. The tool has to be web-based for platform independence and to avoid installation
overhead. The interface should be intuitive according to current HCI principles and accept
unstructured text as its input. The timeline author should be able to manually refine the
created sca↵old by editing, adding or removing events, and enriching them with media
like pictures or videos. The output of the tool is an interactive visualization for use by
an online reader that supports drill-down from the overview level to explore selections in
more detail.

Preface

Prior to formulating this thesis we submitted a paper to the IEEE Conference on
Visual Analytics Science and Technology (IEEE VAST 2015, http://ieeevis.org).
The paper was co-authored by Matthew Brehmer and Tamara Munzner from the
InfoVis Group at the University of British Columbia (UBC) in Vancouver, Canada.
Several paragraphs in the following thesis are adopted literally and will be marked
with vertical lines on both sides (like this paragraph). To stay consistent in the
wording I will also refer to myself as “we”, the individual contributions are clarified
below. The paper in its version from March 31, 2015 can be found in appendix A.2
(page 61 ↵.).

The individual contributions to this work, split between the three paper authors, are
described in the following: The general idea for the concept is based on my experience as
a working student in a newsroom for three years. The detailed concept originates from
discussions with Tamara Munzner and the InfoVis group at UBC. The prototype was
developed by me and went through three major states: the implementation of the initial
idea, the deployment online, and the addition of a read-only version for presentation.
Between the states we refined the design together as a group, the implementation was done
by me. The informal interviews and test cases were conducted by Matthew Brehmer and
me. The Timeline Authoring Model was suggested by Matthew Brehmer and elaborated
together with Tamara Munzner and me. Pre-paper considerations about structure and
content were suggested by me and refined together with UBC’s InfoVis group. The writing
was done in alternating passes between Matthew Brehmer, Tamara Munzner and me.
Illustrations and graphics were designed by me.

I hereby a�rm that I have composed this thesis independently, that I have marked all
quotes as such, particularly sections taken from the research paper co-authored with
Matthew Brehmer and Tamara Munzner, and that I have declared all used resources
and tools.

Vancouver, May 15, 2015

. .

http://ieeevis.org)

Contents

1 Introduction 1
1.1 Computational methods in the news . 1
1.2 Motivation: Enhancing accessibility . 1
1.3 Method: Combining NLP and InfoVis . 2
1.4 Contribution: TimeLineCurator & Authoring Model 3
1.5 Outline . 4

2 The big picture of timelines 5
2.1 Transmission of Time . 5

2.1.1 Sense of time to Language . 5
2.1.2 Language to Data . 6

2.2 Visualizing Time . 8
2.2.1 Time as quantitative value . 8
2.2.2 Marching along the line . 9
2.2.3 Historical excursion . 10

2.3 Use cases . 12
2.3.1 Edgy examples . 12
2.3.2 Scientific examples . 13
2.3.3 Interactive general purpose examples 15

2.4 Timelines in journalism . 16
2.4.1 Shiny examples . 16
2.4.2 Benefits . 17
2.4.3 Missed opportunities . 18

3 Creating Timelines 19
3.1 Common approaches . 19

3.1.1 Manual drawing . 19
3.1.2 Structured creation . 20

3.2 Challenges . 21
3.3 New approach . 22
3.4 Timeline Authoring Model . 23

4 Related Work 25
4.1 Visualization Authoring Tools . 25
4.2 Timeline Visualizations from Structured Event Data 27
4.3 Extracting Time Expressions from Unstructured Text 29
4.4 Visualizations from Unstructured Text . 30

5 TimeLineCurator 31
5.1 Identifying TimeLineJS Limitations . 31
5.2 Requirements & Goals . 32
5.3 Design Process . 33

5.3.1 Necessary elements . 33
5.3.2 Design Iterations . 34
5.3.3 Implementation . 37

5.4 Architecture . 39
5.5 Interface & Design Rationale . 41

5.5.1 Timeline View . 41
5.5.2 List View . 41
5.5.3 Document View . 42

I

5.5.4 Control Panel . 42
5.5.5 View Coordination and Navigation 43
5.5.6 Presentation and Export . 43
5.5.7 Exemplary walkthrough . 43

6 Analysis 45
6.1 Extraction Error Benchmark . 45
6.2 User Experience Comparison . 47
6.3 Speculative Browsing . 48
6.4 Curated Examples . 49
6.5 Use Cases . 50

6.5.1 Solicited potential users . 50
6.5.2 Unsolicited current users . 51

7 Discussion & Future Work 53
7.1 Discussion . 53
7.2 Future Work . 54

8 Conclusion 55

A Appendices 61
A.1 Contents of the CD . 61
A.2 VAST Paper . 61

II

1 INTRODUCTION

1 Introduction

Working in the newsroom is an exciting and fast-paced experience. The motivation for
this thesis springs from that environment and aims to give an idea of how digital tools
can and should be used more frequently. It introduces the idea and implementation of
TimeLineCurator, a tool that was developed for improving the specific case of creating
event timelines.

1.1 Computational methods in the news

The traditional newspaper in its analogue paper format is in a state of crisis these days.
Still we all rely on solid news reporting and must not trust anything that is floating
around the Internet. Thus reliable journalism is still in high demand, but has to undergo
a makeover using today’s technological possibilities. Using computational methods inside
the newsroom is not new at all, but due to the increased prevalence of tablet computers
and smartphones, the distribution channels for news has also changed. These days, news
are consumed mainly digitally, which opens up many new ways (and challenges) to present
and explain information.

Instead of using a big data set as mine of information and perhaps taking a selection
from it to present to the reader (visualized as a bar chart or the like), a journalist could
provide a bigger picture and o↵er more of the original data.

Either by simply linking to the origin of the data or by transforming it into a visualiza-
tion, where patterns can be discovered or the readers can delve deeper into data concerning
their personal interest. That not only engages readers because they get the chance to in-
fluence the visualization, but also builds trust and meets the demand for transparency of
sources. However it is a slow process for journalists to become aware of those technolog-
ical possibilities and often it is rather encountered with skepticism. The two worlds of
sophisticated new computational methods and news reporting do not seem to overlap too
much. Thus helpful tools created by computer scientists or engineers remain untapped
by journalists. One reason for not keeping pace with new technology trends is its rapid
speed of change. To be constantly informed about the newest trends and developments,
you basically have to spend most of your time tracing them. Those who don’t are quickly
left behind. In today’s journalistic education, computational tools for analysis as well as
for presentation are part of the curriculum but there’s still a long way to go, until they
will actually be used to their full potential. Of course there exist exceptions to the rule
and a huge community of tech-savvy journalists push forward fields like data-journalism
and make use of the newest exciting trends in technology.

There are two di↵erent kinds of tools that aim to help journalists. Tools can either
support analysis, thus the author’s research; or they can be for presentation, where they
support creating cleaned-up output for the reader, with information that is based on
knowledge the author already acquired. The goal of this thesis was primarily the presen-
tation task, but later we discovered that a tool intended for presentation can also be used
as a tool for analysis.

1.2 Motivation: Enhancing accessibility

While working in a newsroom for three years, I discovered that there were attempts to
include computational methods into the daily workflow, but often well-intended ideas
ended up in irritation and finally rejection, where journalists reverted to old known work-
flows. The hectic environment doesn’t allow for much time to learn new tools very often.
Thus long-winded but well understood workflows win out over new unknown ones, even
though these may have the potential to save time in the long run; for example, much

1

1.3 Method: Combining NLP and InfoVis 1 INTRODUCTION

time was regularly spent on typing numbers into a table from another table or retyping
text passages. In the individual case it often is faster that way, but being able to deal
with spreadsheet operations or knowing how to use optical character recognition would be
beneficial in the longer term. Another consequence of not knowing about available tools
was that sometimes ideas for exciting interactive visualizations within news articles were
precluded. Sometimes because ideas were too ambitious, but in many cases the realization
of those ideas failed because of the lack of knowledge or experience with available tools.

When it comes to infographics, one recurring form of visualization were timelines.
Event timelines aim for giving an overview over a sequence of events that all belong to a
particular topic. Timelines can, for example, show happenings in the news, the biography
of a person, the history of a company, the development of a certain technology, or a
review of events that led to or influenced a historic event. A visual timeline for a print
product is created “by hand” - in an illustration program, but composed manually; a
digital version often simply builds on top of that static print graphic, perhaps adding
photos or additional information. Even though we assumed that there were existing tools
to create more elegant interactive timelines, that were not based on a static graphic but
independent and responsive, there was never enough time during the workday to devote
attention to finding out more about them. As a thesis project, I wanted to take a closer
look at possible ways to improve the process of creating timelines. I knew that often the
content of a timeline was either based on the article that it is accompanying, or that the
information about the single events came from only a few di↵erent source documents, such
as a short biography or a Wikipedia page.

1.3 Method: Combining NLP and InfoVis

After learning more about automated timeline creation I discovered that there existed
several advanced tools that allow for an easy creation, so there was actually no need to
revolutionize the idea of translating event data into an interactive visual timeline. Only
the process of generating the underlying event data set seemed to indicate potential for
improvement, since authors have to create the underlying event data set in a rather tedious
process. They have to manually enter dates into a spreadsheet or in some other structured
file format. It turned out that this manual data set generation appears intimidating to
many authors, and was a common reason for not using those tools in the first place. I
imagined if that process was easier and more visual it could attract also less technologically-
inclined people to actually use it. Also, the author should not have to start with an
initially empty data set but get suggestions based on the source documents he has available
- which could automatically be searched for information about events. We will refer
to those source documents as unstructured text in the following. Unstructured meaning
that the text is written freely in consecutive sentences, without following any structured
pattern. Since events most often have a temporal component - keywords referring to the
time of occurrence - temporal expressions could be used as indicator for an event. After
investigating existing methods for temporal information extraction from unstructured text,
I decided to combine the two domains of Information Visualization (InfoVis) and Natural
Language Processing (NLP) to approach the problem. To meet the original demand for
facilitating the creation process without requiring to learn a complicated tool, it has to be
easily accessible as well as easily understandable. To make it accessible the author should
not be required to download or install anything (which may require admin rights and
hard-drive space), but he should rather be able to access the environment from anywhere
with a regular browser. To ensure a user-friendly creation process principles of current
humancomputer interaction (HCI) should be considered and applied. And finally the
environment should o↵er several options for export to enable distributing the resulting

2

1 INTRODUCTION 1.4 Contribution: TimeLineCurator & Authoring Model

timeline not only in one default way, but in di↵erent ways. Also the raw data should be
accessible to the author.

1.4 Contribution: TimeLineCurator & Authoring Model

We analyzed common methods for creating visualizations, as well as methods for creating
timelines in particular. We discovered which aspects of these tools work well and which do
not. Based on personal experience and via several semi-structured interviews, we found
out what timeline authors would like to have and what confuses them.

Figure 1.1: The browser-based visual timeline authoring tool TimeLineCurator, showing a timeline of
Scandinavian pop music, where each color corresponds to a country; access the interactive timeline at
http://goo.gl/0bHlvA.

Our primary contribution is TimeLineCurator, the web-based visual timeline author-
ing system shown in Figure 1.1. It allows for the fast and easy creation of a structured
temporal event data set from unstructured document text, combining imperfect natu-
ral language processing and “human in the loop” authoring. With TimeLineCurator,
an author can speculatively browse a document’s temporal structure; she can quickly
rule out documents as unsuitable for timelines within seconds, or interactively curate
suitable documents to refine an event set within minutes, receiving constant visual
feedback throughout the curation process. Our secondary contribution is a Time-
line Authoring Model, which we use to position TimeLineCurator relative to other
timeline generation approaches in terms of goals and tasks.

3

http://goo.gl/0bHlvA

1.5 Outline 1 INTRODUCTION

1.5 Outline

Before we provide more detail about the TimeLineCurator project, we will consider the
big picture of timelines in Section 2. We start with how we as humans imagine time in
our heads, how we translate these thoughts into language, and how written descriptions
of time can be interpreted by machines in 2.1. We also survey how time can be visualized
on paper in 2.2. Historical as well as current examples from several domains show the
benefits of visual timelines in 2.3 and lead us to today’s usage of timelines in journalism
in 2.4. In Section 3 we describe di↵erent approaches to create timelines in 3.1 and the
challenges they pose in 3.2. Based on this survey, we suggest a new approach in 3.3, which
we compare to previous approaches according to our Timeline Authoring Model, which we
introduce in 3.4.

Section 4 gives an overview of related work. It is separated into four parts concerning
the di↵erent tasks that TimeLineCurator addresses. 4.1 and 4.2 consider the InfoVis part:
general authoring environments for visualizations and those for timelines in particular. 4.3
relates to the NLP task of the temporal information extraction. 4.4 points out projects
that already join both parts and use NLP to generate di↵erent kinds of visualization -
many of them address topic extraction.

Section 5 considers the development of TimeLineCurator in detail. 5.1 outlines the
limitations of current authoring systems, 5.2 then defines our goals and requirements
based on that. The iterative design process and its resulting architecture are described
in 5.3, the single components and options for export are explained in 5.5.

The analysis of TimeLineCurator will be described in Section 6. We conducted
benchmark tests (6.1), asked people to compare TLC to current timeline authoring tools
(6.2), show examples of speculative browsing (6.3) as well as curated results (6.4) and
describe experiences and feedback from users and the community in 6.5.

Discussion and ideas for future work will follow in Section 7, the conclusion in Sec-
tion 8.

4

2 THE BIG PICTURE OF TIMELINES

2 The big picture of timelines

In addition to the three dimensions of space time is the 4th dimension 1, time is inseparable
from space2, “Time is what keeps everything from happening at once”3. Those thoughts
on the abstract nature of time give an idea that time is hard to grasp but still somehow
implies a spacial representation.

We won’t go deeper into matters of physical reality, psychology or behavioral science;
however it is worth mentioning that time, despite its ubiquity, is something impalpable
and cause for much philosophical and scientific analysis. In the following we will have a
look at how temporal information is expressed in language and how we can transform the
written word into a form that is interpretable by a machine. Despite its abstract nature,
time can also be expressed as a quantitative value and visualized graphically in many
di↵erent ways, but it has by far not always been clear of how it can be best visualized.
At the end of this section, we will look at the special case of timelines in journalism, and
how they can be used, for example, to explain chronological developments inside a story
or to summarize historic events.

Figure 2.1: From Scott McCloud’s “Understanding Comics” [26], Chapter Four “Time Frames” (1993)

2.1 Transmission of Time

To convey the time and duration of an event we use certain grammatical rules and often
spatial metaphors. These rules and metaphors allow us to understand it quite precisely,
but in order to translate it into machine-readable data, so that a computer can classify an
event’s time and duration, we need to search for patterns and write rules - which is one
approach of natural language processing.

2.1.1 Sense of time to Language

Many expressions in our language use spatial metaphors to express time. Also, our imag-
ination of time is closely connected to space. Often we use the metaphor of walking along
a path. Everything in front of us refers to the future, and things behind us happened in

1
introduced by Sir Isaac Newton in his “Mathematical Principles of Natural Philosophy” from 1687

2
That is according to how Scott McCloud explains comics [26] in Figure 2.1; and also in common

language use, see Section 2.1.1

3
From Ray Cummings’ science fiction novel “The Girl in the Golden Atom” from 1922

5

2.1 Transmission of Time 2 THE BIG PICTURE OF TIMELINES

the past [27]. Because we know that time is continuous and nonrecurring, we often use
one-dimensional terms to describe time. We say, for example, “I am looking forward to
something” or “when I’m looking back”. Those spatial schemes that we create in our minds
provide us information about how to organize events in the continuous flow of time [3].

We use temporal words to indicate when something happened, or to position it rela-
tive to something else. Most languages use similar ways to refer to time, however we will
primarily focus on English. In written and spoken English, tense and aspect give informa-
tion about time. Tense (the grammatical form of a verb: past, present, future) allows us
to “localize” events or states in time, whereas aspect tells us more about the flow of the
event. Aspect can either be perfective or imperfective. Perfective means a bounded and
self-contained event, where the verb indicates an action that took place at one point in
time, beginning and ending included (“I ate ice cream”). Whereas imperfective indicates a
continuous or repeating event (“I was eating ice cream” or “I used to eat ice cream”) where
it is implied that the event had a certain duration. In “How time is encoded” Klein [17]
describes four more types of devices that encode time in language. These devices include
lexical aspect (where the meaning of the word implies more about its temporal feature, for
instance sleep vs. crack), temporal adverbials (temporal expressions like “soon”, “now”,
“rarely”), temporal particles (only present in few languages, such as Chinese, where a su�x
of a verb can influence its temporal meaning), and discourse principles (position within
the whole story, assuming that the default order is chronological).

In order to place an event in a sequence, we need a reference date, which is the time
of speaking or the time a document was written. With this point of reference, we are able
to get information about the time of events, compared to the reference date or in relation
to another event (whether it was before, at the same time, or after some other event).

2.1.2 Language to Data

When we speak or write about events, we do not always use concrete dates that we might
see in a calendar, like “on September 16, 2008 stock markets crashed”. Of course, the style
of writing or speaking varies according to di↵erent purposes, but if we don’t write formal
reports, it’s rather unlikely that we annotate every event with a concrete date. We often
use vague temporal references, like some point in the future or past, or a reference time,
like “at the time of the economic crisis”. Also, the duration rarely gets indexed; often we
can infer if the event was short or long. To understand the context it might be enough
information and we can already order events in time and get the chronology straight in
our heads. If we want to make the time understandable by a machine and automate the
process of extracting temporal information from unstructured text, these vague temporal
expressions present some challenges.

That’s where the field of Natural Language Processing (NLP) comes in. There are two
di↵erent approaches to process written text: the rule-based approach and the machine
learning (ML) approach. With the former approach, the machine can stubbornly follow
some rules, using search strings and regular expressions to identify something specific.
With the latter approach, ML algorithms can be applied to identify something based on
previous “experience” gained from an annotated example document collection. (There are
more approaches, such as unsupervised learning, where the example data doesn’t have to
be annotated as much, but we won’t go deeper into that).

Currently, ML approaches dominate the field. However, in some cases, the heuristic
rule-based approach is better suited. Recognizing temporal expressions, for example, is
one such case, because we assume that there is a huge but finite amount of possibilities
to express them. That’s why we can use rules, which are very powerful when it comes
to pattern matching. The big advantage compared to ML is, that there is no expensive

6

2 THE BIG PICTURE OF TIMELINES 2.1 Transmission of Time

annotation of documents and training cycles needed. The rules make sure that instructions
are followed stubbornly, so it is more likely to comprehend why the system does what it
does - which you can’t always tell when it comes to ML. Of course, writing the rules and
dictionaries is a very tedious process as well, and in general rule engineering doesn’t scale
too well. The more rules you have, the more possibilities of them getting into each other’s
way appear and it can easily result in a messed up system. The order in which the rules
are run has to be determined and also what happens when a rule matches - should it look
further or stop immediately. Which approach performs better depends on the number of
rules or the algorithms a ML approach uses and can’t be determined in general.

When raw data gets bigger, more chaotic and noisy ML becomes more suitable. ML
algorithms can, for example, create decision trees to enable a decision in the case of
ambiguity. Based on experience they are able to go for the more likely case. Since ML
models are robust also to unfamiliar input (like typos or unknown words), they can handle
huge unorganized data sets to a greater extent than a rule-based approach. To improve an
ML system, the creators can provide it with additional annotated test data; this is time
consuming, but much less complex than expanding rule-based systems. Still, NLP tasks
such as “Named Entity Recognition” (to recognize names, such as persons or organizations)
or “Morphological Segmentation” (to identify the class of a word), hand written rules and
dictionaries can obtain better precision.

Once a temporal reference is detected, the machine might still not be able to find the
date in a calendar, because it is probably not expressed in a standardized format. “Nor-
malizing” these expressions is required, which means translating them into a standardized
format. This can happen by reformatting it (for instance 3 May 2015 becomes 2015-05-
03), or by calculating its date relative to a reference date such as the document creation
time (DCT) - which is the time when the text was written (for instance yesterday becomes
DCT - 1). The machine-readable format looks like this: YYYY-MM-DD, which is the
ISO 8601 standard.

With Recognition and Normalization, a machine can determine with some cer-
tainty which date a temporal reference inside unstructured text refers to [24]. In numbers,
state-of-the-art techniques can achieve F-measures of around 0.9 [62, 21].

7

2.2 Visualizing Time 2 THE BIG PICTURE OF TIMELINES

2.2 Visualizing Time

Despite the impalpable nature of time, we are able to measure it with a stop watch or
mark it inside a calendar and thus get a quantitative value. Some experiments proved
our literacy in “reading” time and the concept of displaying time one-dimensionally from
left-to-right - at least for left-to-right writing audiences [44]. Historically it wasn’t until
the 1750s that people got used to that kind of visualization. We will look at how it evolved
and in which domains it is currently used.

Figure 2.2: Extract from a survey of time-oriented data visualizations by Christian Tominski and
Wolfgang Aigner [65]

2.2.1 Time as quantitative value

In general, time is one of the most prevalent parameters in visualized data. A large part
of information visualization concerns time-series data, where a progress or shift is shown
over time. “The TimeViz Browser” [65] is a collection of visualization techniques for time-
oriented data. Figure 2.2 gives an impression of how many di↵erent ways there are to
display time. In “The Visual Display of Quantitative Information” [43], Tufte, a pioneer
in modern information visualization emphasized the strength of the human understanding
of temporal order and thus the concept of aligning data chronologically along a path.

“With one dimension marching along to the regular rhythm of seconds, min-
utes, hours, days, weeks, months, years, centuries, or millennia, the natural
ordering of the time scales gives this design a strength and e�ciency of inter-
pretation found in no other graphic arrangement.” (Edward Tufte)

8

2 THE BIG PICTURE OF TIMELINES 2.2 Visualizing Time

Already way earlier Priestley, who is called the inventor of the modern timeline (more
in 2.2.3), describes the line as the most suitable representation of time in his book “A
description of a chart of biography” [33].

Thus the abstract idea of TIME, though it be not the object of any of our
senses, and no image can properly be made of it, yet because it has real quan-
tity, and we can say a greater or less space of time, it admits of a natural
and easy representation on our minds by the idea of a measurable space, and
particularly that of a LINE; which, like time, may be extended in length [...]
and thus a longer or shorter space of time may be most commodiously and
advantageously represented by a longer or shorter line. (Joseph Priestley)

According to that quote from 1765 [33] and according to today’s overall experience
the most common representation for time is a line in all variants of shape: circular, to
visualize periodicity, wavy to show vacillations and so on. The most basic form when it
comes to aligning events is along a horizontal straight line, where time is “running” from
left to right.

2.2.2 Marching along the line

If we draw visualizations in two dimensional space, we basically have two axes along which
we can align our elements. The horizontal and the vertical axis. Both often indicate
increase in value, either to the top or to the right.

Vertical alignment The reasons for why a top position is interpreted bigger, more or
better than a lower one comes from our ubiquitous gravity and thus how we and everything
around us is oriented [40]. Physically speaking: something at the top has more potential
energy than something lying on the ground. The vertical position is also prevalent in
our language: “being on the top”, “feeling down”. That’s one reason why the vertical
axis is convenient for displaying value, quantity or ranking. Figure 2.3 shows examples,
such as weather graphs or poll results - the more quantitatively, the further at the top.
Not following that idea can lead to quite some confusion as Figure 2.3 c) shows - here
the vertical axis is reversed and gives the impression that gun death went down after the
“stand your ground” law was passed in Florida in 2005 - even though exactly the opposite
was true.

Figure 2.3: Three examples of graphs visualizing quantity along the vertical axis: a) Information about
precipitation and sun in Vancouver (http://www.weather-guide.com), b) Regular political poll about
German parties’ popularity (http://tagesschau.de), c) Example of a misleading chart from Reuters,
showing the vertical axis upside down (http://goo.gl/gmZwJz)

9

http://www.weather-guide.com
http://tagesschau.de
http://goo.gl/gmZwJz

2.2 Visualizing Time 2 THE BIG PICTURE OF TIMELINES

Horizontal alignment An increase from left to right doesn’t seem to have natural
causes, because on the horizontal plane most things are generally pretty symmetric. In-
cluding our body. Except that most people have one dominant hand. The handedness
influences not only our ability to act but according to a study from 1988 by Làdavas
also our judgment of the referential term on the horizontal dimension [20]. Even more
influential however are the di↵erent directions of writing. A study by Tversky et al. from
1991 tested how that influences spatial perception [44]. With around 1200 participants
(children, as well as adults) from di↵erent language cultures (English, Hebrew, Arabic)
they looked at how they would use space to represent relations that are non-spatial. They
let their study participants place elements on a paper, that either represented temporal
information, quantitative information or their preferences. The result for the temporal
alignment was a strong tendency to left-to-right for English speakers, and the other way
around for Arabic speakers (Hebrew speakers were less coherent - probably because they
are more likely to learn European languages, also arithmetic operations are made from left
to right in Hebrew). Interestingly very young participants tended to align the temporal
information from top to bottom [44]. In figure 2.3 a) we already saw the progression of
the year marching along the horizontal line, Figure 2.4 shows two more use cases other
than bar charts.

Figure 2.4: Two examples with the horizontal axis being the time floating from left to right: a) The
audio track as it can, for example, be found inside an audio editing program, b) A chart ploting the
times of sunrise and sunset over one year (in this case 2007 in Boston, MA, USA), based on data from
http://daylightchart.sourceforge.net

Marking events The single events that are aligned along that line can have di↵erent
properties. They can vary in duration and importance or belong to di↵erent categories.
So we need to think about how to indicate these di↵erences. In today’s timeline tools we
often see a dot for an instantaneous event, a line for a period of time and either coloring
them accordingly to their categories or use vertical alignment to indicate their a�nity.
Weighting events according to their importance is not very common, but could be done
by changing the radius of the circle and increasing the line width or, for example, through
saturation of color.

2.2.3 Historical excursion

Distributing events along a one-dimensional line seems well accepted and easily under-
standable today. However Rosenberg pointed out it is “only quite recently that scholars
first thought to represent chronological relationships among historical events by placing
them on a measured timeline”[36]. Historically we could go back to ancient cave paintings
and claim those drawings to be very early timelines, but let’s start with “modern” time-
lines from the 17th century. (“A Timeline of Timelines” shows an elaborate listing with

10

http://daylightchart.sourceforge.net

2 THE BIG PICTURE OF TIMELINES 2.2 Visualizing Time

representative examples, beginning with the very first discovered timeline-like records,
referring back to the second century A.D. [53]).

“The timeline seems among the most inescapable metaphors we have. And yet,
in its modern form, with a single axis and a regular, measured distribution of
dates, it is a relatively recent invention.” (Rosenberg and Grafton)

In the book “Cartographies of Time: A History of the Timeline” [37] Rosenberg and
Grafton give an in-depth review of graphic representations of time in Europe and North
America from 1450 until today. They entitle Joseph Priestley, an Anglo-American theol-
ogist, to be the inventor of the modern timeline as we know it today. 1765 he published
“A Chart of Biography” shown in figure 2.5, where the life spans of 2,000 famous men
between 1750 A.D. and 1200 B.C. were shown.

Figure 2.5: “A Specimen of a Chart of Biography” from Joseph Priestley, 1765 [37]

Because it was the first chart that included all the necessary visual vocabulary to map
time, it was seen as the worthy successor of matrices - the standard representation of
chronological data up to that point. Priestley established the idea of showing the lifespan
of a person with a horizontal line (starting at birth date, ending at its death), to indicate
dates that are uncertain he used dots. That new kind of representation needed explanation
to be understood by people and also had opponents. Laurence Sterne for example, an
English writer didn’t like the idea of showing history in a straight line and preferred telling
stories with digressions and deviations. Presenting time as something linear seemed like
a construction to him. Nevertheless since the 18th century the timeline became more
familiar and understood. It even played a crucial role in the ”modern understanding of
historical time as linear, chronological, and flowing from future to past”[30], and it enabled
people to compare di↵erent events in history. The broad dissemination let new questions
arise, like how can you fit all important events on a horizontal line without resulting in a
54 feet long scroll (like Dubourg’s Chronological Chart from 1753) or how can you combine
time data with additional information. In our modern digital times those questions can
luckily be answered by using interactive methods like zooming and details-on-demand [59,
37, 30].

11

2.3 Use cases 2 THE BIG PICTURE OF TIMELINES

2.3 Use cases

Before we start focusing only on timelines in the news, we show a few selected examples of
historic timelines and timelines in scientific environments and what the term “interactive”
means in that context.

2.3.1 Edgy examples

To look a little outside the box of a straight horizontal timeline we show two examples of
di↵erent kinds of timelines. They are both originally hand drawn and can rather be seen
as artworks, more than infographics. It is probably necessary to see them in poster size
to acknowledge their full beauty.

Figure 2.6: “The History of the Political Parties”, from HistoryShots http://goo.gl/yWtMes

The History of U.S. Political Parties The illustration shown in Figure 2.6 devotes
itself to the history of political parties in the United States from the birth of the political
system in 1789 until today (or the day of creation of the second part of the timeline). It
is a two-part work made by designers living in two di↵erent centuries. Around 1894 the
first part was created by an unknown designer, 115 years later Larry Gormley and Bill
Younker continued the graphic with surely way more modern design tools, but modeled
on the look and structure of the original piece. The graphic shows the serpentinous course
of popularity of the single parties, combined with details about political and historical
events. All the reigning presidents and their cabinet members are listed to give American
history enthusiasts an artistic visual summary to hang up on the wall. The horizontal
line indicating time is estranged here to also indicate the popularity, and also uses the
possibilities of annotating it with summaries or headlines of events.

Figure 2.7: “The Temple of Time” by Emma Willard, 1846 [37]

12

http://goo.gl/yWtMes

2 THE BIG PICTURE OF TIMELINES 2.3 Use cases

The Temple of Time Figure 2.7 shows a graphic created by Emma Willard in 1846. It
projects important figures and historical events onto a 3D temple. Columns represent the
centuries, the floor shows historical events, the ceiling biographies of important people.
The intention behind that representation was to facilitate remembering historical facts due
to spatial imagination and architectural details [37]. As Willard wrote herself onto the
chart: “The attempt to understand chronology by merely committing dates to memory, is
not only painful, but [...] useless [...]. The relation which any given event bears to others
constitutes the only useful knowledge.” She suggests that the viewers should (mentally)
locate themselves inside the temple and look around, to see the characters of the time.
To that time, this kind of illustration was very unconventional and must have been pretty
mind-blowing.

2.3.2 Scientific examples

Many research areas use timelines for investigation and representation of events. Medicine,
Engineering, History only being a few of them. And there certainly are more who would
like to use them, but are lacking the tools or the knowledge. For example, in Computer
Forensics, Olsson and Boldt claim that evidence plotted on a timeline would help in-
vestigators solve crimes faster and more intuitively [29]. We look at one example from
medicine, meant to learn from the course of a disease and to improve medical treatment;
and one from geology and human science, tackling the scalability issue in the history of
the universe.

Figure 2.8: Lifelines2 to discover temporal categorical patterns across patient records. http://www.
cs.umd.edu/hcil/lifelines2

LifeLines This project that was first presented 1996 at CHI by Plaisant et al. and is
being improved and refined until today (LifeLines2, EventFlow [57]), visualizes personal
medical histories generated from electronic health records as seen in Figure 2.8. Dif-
ferent incidents from medical records like reported problems, diagnoses, test results or
medications are aligned on a timeline to enable the discovery of patterns that could give
information about cause and e↵ect. Temporal patterns can be highlighted, and it is pos-
sible to align several records from di↵erent patients one above the other according to one

13

http://www.cs.umd.edu/hcil/lifelines2
http://www.cs.umd.edu/hcil/lifelines2

2.3 Use cases 2 THE BIG PICTURE OF TIMELINES

central event (for instance a heart attack). That enables a comparison of symptoms and
treatments between patients, because in that case the exact calendar date is less important
than the elapsed time between incidents and the course of the disease itself [31]. The Uni-
versity of Maryland research group continued improving the tool, and now also developed
EventFlow, which can not only handle point event data but interval data.

Figure 2.9: ChronoZoom project dedicated to “visualizing the history of everything” http://www.
chronozoom.com

ChronoZoom Another example in Figure 2.9 approaches the problem of scalability in
timelines. ChronoZoom started in 2009 at the University of California Berkeley. The idea
was to develop something that gives an understanding of the very profound di↵erence
between the scale of humanity (which starts with the Ancient Egypt, ca. 5,000 years ago),
geologic history (the earth shaped around 4.54 billion years ago), and the history of the
universe (the big bang, which is supposed to be around 13.8 billion years ago). Doing
the math shows: Humanity could fit 2,760,000,000 times into the time of evolution of the
universe. Because it is impossible to show such scales on a paper or even a monumental
poster, they assumed interactive tools could remedy this problem. The scalability challenge
needed new deep zooming technologies. Microsoft Research, Moscow State University and
the Outercurve Foundation joined in and (after some rather less performant attempts) an
interactive, browser-based beta version of ChronoZoom was released in 2012. The tool
enables the reader to navigate through 13.8 billion years, o↵ering an all-in-one overview
and interactive zooming into human history even to the level of selected single day events
(which corresponds to a five trillion to one zoom ratio) - important events can be selected
to get more information. Animations between the states give an idea of the distances
that lie in between. All code is open-source and since 2013 there are also authoring
tools available, enabling students, educators and scientists to create their own timelines,
with other scientific, personal, or statistical data. According to the authors it o↵ers the
“opportunity to algorithmically generate timelines and exhibits that can help researchers
in various fields, as well as the general public”[49]. A further aim of the project is now to
establish some lesson plans for teaching historical thinking in schools and universities [49,
63].

14

http://www.chronozoom.com
http://www.chronozoom.com

2 THE BIG PICTURE OF TIMELINES 2.3 Use cases

2.3.3 Interactive general purpose examples

Interactivity is currently a widely used term and can mean a lot of di↵erent things. In many
online applications it simply means that the reader can click on something to get more
information - a hyperlink is the most basic interactive element on a website. Advanced
interactive elements are those where readers can, for example, input their own data to
look up things that match their personal interest or they can filter from a list, zoom
into a map and so on. Yi et al. defined seven kinds of interaction inside information
visualizations. Those are: Select, Explore, Reconfigure, Encode, Abstract/Elaborate,
Filter, and Connect [51, 28, 5].

Figure 2.10: Interactive timeline about inter-
net memes, created with Dipity, http://www.
dipity.com

Figure 2.11: Timeline about the Arab Spring,
created with TimelineSetter on PBS Newshour,
http://goo.gl/KquEJq

In Dipity’s timeline about memes, as shown in figure 2.10, the reader can select a
meme to get more information about it, in that case a short description, a video or a
picture and the chance to write a comment or share that meme on social media. Other
timelines, like shown in figure 2.11 (created with ProPublica’s TimelineSetter) let the
reader filter what categories to display, and abstract/elaborate the scale. Some timelines
use semantic zooming to provide di↵erent granularity for di↵erent zoom levels. In a
zoomed out view events can for instance be aggregated to give an overview, and be layed
out more detailed when zoomed in.

Interactivity can solve the issues of scalability and occlusion satisfactorily, as seen in
the ChronoZoom project (Figure 2.9) and in the interactive examples above (Figure 2.10
and 2.11). The structured creation also enables a faster and more generic creation, much
more information can be included compared to static timelines. Potential drawbacks are
that the automatic generation allows for a sloppy selection of events, because the author
doesn’t have to care about space limits and they certainly are less of artworks than hand-
drawn static ones, but simply serve the purpose of information transfer.

15

http://www.dipity.com
http://www.dipity.com
http://goo.gl/KquEJq

2.4 Timelines in journalism 2 THE BIG PICTURE OF TIMELINES

2.4 Timelines in journalism

After showing examples from several domains, we now focus on timelines used on news
websites or in digital newspapers. They generally summarize a news topic, often something
that is still ongoing and would benefit from being updated as soon as something new
happens.

2.4.1 Shiny examples

There certainly are many examples, varying in shape and functionality. To give an im-
pression of what’s possible we picked out two quite di↵erent timelines. One minimalist
example from The New York Times, and one colorful and loaded one from The Guardian.

Figure 2.12: Timeline about the discovery of the Higgs boson, The New York Times, Mar 2013 [55]

The Higgs, From Theory to Reality Very simple but yet elegant timelines, that
give a quick overview of a news story can be found at The New York Times’ website
- Figure 2.12 shows an example. Authors used that framework for several stories. It
immediately gives an overview of the timeframe of the story, and thereafter accompanies
the reader through the development of story. Content of the single events is composed as
regular top-down text. On the one hand the timeline o↵ers navigation through the page,
by scrolling to the event’s position inside the text when selected; on the other hand it
always highlights the currently viewed event, when navigating through the text manually.
The timeline is very simple and unobtrusive, but still o↵ers a convenient visual assistance
for the story.

The path of protest A colorful and ludic approach was done by The Guardian for their
timeline about the Arab spring, shown in Figure 2.13. The reader can navigate through
a huge data set of events. The data points are generated from all articles that covered
that topic. All countries involved have their own track on a long three-dimensional uphill
road towards the most recent data point. Di↵erent icons indicate di↵erent categories
of events (protest, political move, regime change, and international response). Hovering
over an event gives a quick summary of the data point, clicking on it guides the reader

16

2 THE BIG PICTURE OF TIMELINES 2.4 Timelines in journalism

Figure 2.13: Interactive timeline about the Arab Spring, The Guardian, Jan 2012 [56]

to its accompanying article. A horizontal timeline at the top lets the reader keep track
of the position within the whole timeframe. The timeline indicates the progress of time
horizontally inside the top bar, as well as vertically (or rather along the depth axis into
the third dimension) inside the main view. The interactive visualization first gives an
impression of how much happened during the Arab Spring, and how it was distributed
throughout di↵erent countries; second it serves as directory for stories happening at a
specific date, and how they relate to others and the whole timeframe. Compared to the
example in Figure 2.12 where the reader is invited to read the whole story chronologically,
that timeline is rather meant for discovery and the bigger picture.

2.4.2 Benefits

As seen in previous examples, timelines can either be used as an accompanying element
within a text story or they can stand alone. They can tell a story chronologically or simply
invite the reader to explore dates of their interest.

Visual Index of a text story If used additionally to a written text, a timeline can give
a quick summary of the text. Figure 2.12 shows an example from The New York Times,
where the timeline visually defines the scope of the whole article. It enables a jump
start into the topic and the reader knows immediately which timeframe will be covered.
Furthermore it indicates roughly how many events there are to expect. Going through the
story, the timeline will always indicate where the displayed paragraph is within the whole
story. Also the distribution of events across that extent becomes visible immediately; for
example, if things happened quickly after another or if there was a long time without any
incidents. Spatial metaphors help giving the reader a chronological understanding.

Story told chronologically There are also many examples where the timeline is the
article. To understand the story the reader is expected to navigate all events successively
and is guided through the story like that. Again the visual timeline supports understanding
where the current event is in the overall story, how much happened around the same time
and so on. Especially news stories often consist of several consecutive events, so this

17

2.4 Timelines in journalism 2 THE BIG PICTURE OF TIMELINES

fragmentation can help to understand the complete story. When events evolve quickly, a
timeline can support the reader staying up-to-date.

Comparison Often we want to compare things. People, countries, companies etc. Com-
paring them on a temporal basis can shed light on many things. Meeting points, possi-
bilities of influence, who was first with having an idea, who met whom before the other
one and so on. Figure 2.13 shows many di↵erent Middle Eastern countries that were all
part of the Arab spring. The timeline displays protests, political moves, regime changes
and international responses and gives a good impression of what happened simultaneously,
when the big movements were and how the world reacted.

2.4.3 Missed opportunities

As pointed out, timelines seem to be helpful in understanding a news story, especially
when it can be split into single events - still we don’t see too many timelines. More often
we see articles that list events in textual form explaining the temporal development of a
story as seen in Figure 2.14 and 2.15. In this tabular form we don’t see the distribution
of events, we don’t initially see the timeframe and often (if it’s a long list) we first have
to scroll to the bottom to see the scope of the story. In Section 3.2 we will go into more
detail about possible reasons for those missed opportunities.

Figure 2.14: Non-visual timeline from The
Guardian about the leaking process of NSA files,
July 2013, http://goo.gl/OcB9YB

Figure 2.15: Important events of a hockey player’s
life in textual form, November 2014, http://
goo.gl/5kVFNA

18

http://goo.gl/OcB9YB
http://goo.gl/5kVFNA
http://goo.gl/5kVFNA

3 CREATING TIMELINES

3 Creating Timelines

After discussing why timelines can be useful in many cases, the following section will go
into more detail about how timelines can be created, what challenges can appear along
the way, and how we attempt to tackle those challenges with TimeLineCurator. Finally
we will introduce our Timeline Authoring Model, that divides the authoring process into
five tasks, which are: browse, extract, format, show, and update.

3.1 Common approaches

There are di↵erent ways to create timelines. Which one to take, mainly depends on the
medium they aim for. As described in the prior section we can either have static timelines
(primarily for print products) or we can make them interactive so that the reader can
navigate through single events inside digital media. We do not claim that the following
approaches are the only possible ones and they can certainly vary for di↵erent desks and
people, still based on interviews and empirical value they are widely used.

3.1.1 Manual drawing

The most common way of creating static timelines is by using an illustration program like
Adobe’s Illustrator, Corel Draw, or a free alternative like Inkscape. They are all based
on vector graphics. It requires some journalistic work to define what events have to be on
the timeline. The detailed knowledge about those events very likely comes from several
source documents and articles. We can divide the process roughly into three phases as
Figure 3.1 illustrates: First, documents that contain information about the topic have to
be found and read. Second, information has to be extracted, formulated comprehensibly,
and passed on to the third phase: translating the events into a cleaned-up graphic. The
bigger the publisher the more likely it is that those di↵erent tasks are done by di↵erent
people. The third step includes positioning dots and description texts of events manually
one at a time. That means the more events a timeline has, the more complex it becomes.
Especially when some events are close together and others far away, it’s getting tricky
to fit them all in the predefined space. Because of the space limitation and because
designers have to follow certain rules (for instance having a minimum font-size, having a
minimum distance between elements and the like), titles and description texts may have
to be rephrased or shortened, additional elements like images have to be handled with
care - all that results in a rather time-consuming process.

Figure 3.1: Three steps of creating a timeline manually: 1. Searching for information about events, 2.
Scribbling information on paper, 3. Produce cleaned-up timeline in vector-based program.

19

3.1 Common approaches 3 CREATING TIMELINES

A positive feature of this approach is that the author has a significant amount of cre-
ative license when performing this task. As a result, manual drawing can lead to intricate
and engrossing timelines. Furthermore events were probably selected and formulated with
great care and reduced to its essentials. Drawbacks of that approach are that the number
of displayable events is limited to predefined space, thus the amount of text every event
can have is limited. The initial setup and construction plus the positioning and adjusting
of events takes a long time, adding or removing events later results in major restructuring
work, since all events will probably have to be rearranged.

3.1.2 Structured creation

As mentioned before there are alternatives to the digital hand drawing process. As soon
as we have the event data in a predefined structured form we can let the computer gener-
ate an interactive timeline. These approaches however produce timelines that cannot be
customized without a basic knowledge of coding. We demonstrate the standard process
with the example of the JavaScript framework TimelineJS which we already mentioned in
Section 4.2. Figure 3.2 shows the three steps: The starting situation is the same as before,
so the first step still is to find information about events. Second, instead of scribbling the
information somewhere, events have to be translated into machine-readable data; when
writing the events into the table several rules have to be followed. For instance the date
has to be in one specific format (in this case the US format MM/DD/YYYY, which is
rather counter-intuitive for everybody outside the US), titles should have a certain length,
media can be added by inserting a valid URL. The third step is done automatically by
a script. Advanced authors have the chance to change the style or add more JavaScript
functions, but in general no coding is needed to get a basic timeline.

Figure 3.2: Three steps of generating a timeline with a structured data set: 1. Searching for information
about events, 2. Writing the information into a table, 3. Automatically generating the visualization.

Drawbacks here are that the author doesn’t get feedback if the format entered in the
spreadsheet is correct (and will only find out when the visualization is not working in the
end), neither does the author have visual feedback until the very last step of the creation
process. Section 6) goes into more detail about issues users had when using that approach.
Nonetheless advantages are that the author doesn’t have to care about space limitations
and can simply add all events that he thinks are important for the story and even enrich
them with media. No shu✏ing around dots or fiddling with texts is needed and it will still
result in an acceptable looking timeline. Especially for evolving news stories that approach
is much more viable than manual drawing, because events can be added or updated at
any time.

20

3 CREATING TIMELINES 3.2 Challenges

3.2 Challenges

Even though we pointed out many advantages of timelines, especially in the news, we
don’t see timelines as often. The idea of summarizing important events that concern a
certain topic in chronological order is common, but it is more likely to find lists instead
of visualization (like in figure 2.14 and 2.15). These don’t give the reader the chance to
quickly understand the amount and distribution of events, and the timeframe it is covering.
We found several reasons and challenges that could be crucial points for journalists not
making usage of visual timelines more often.

Time In newsrooms especially, but in many other surroundings as well, time is scarce.
Tight deadlines prevent eagerness to experiment. Also it is not very common that writing
journalists think a lot about how they could use graphical elements or visualizations for
their stories. And those who do usually don’t see it as a primary task. That results in
tackling that concern pretty late in the publishing process, which leads to not having too
much time for it. In big publishing companies it is also not common that journalists make
the graphics themselves. Usually there is a graphical department that creates all kinds of
graphical elements and visualizations for the journalists - often based on their scribbles or
notes. However the very short time that is calculated for that process, leads to sometimes
deciding against using graphical elements in the end.

Tools As mentioned before, tools attempting to facilitate a journalist’s life are available,
but not used to their full potential. That springs from either not knowing about them at
all or not knowing enough about them to be able to comfortable work with those tools.
Even if they were keen on getting to know new tools and possibilities it comes back to the
first challenge - that there is just not enough time during the daily production to spend
much time on learning to use them. In the special case of timelines it may also not be
clear in the first place if a timeline is suitable for a certain topic. So unless the author is
convinced of the suitability, he will probably not bother putting much work into finding a
suitable tool.

Integration News sites work with huge and complex Content Management Systems
(CMS). For traditional print authors it often is already a big commitment to occupy
themselves with learning how to use those systems. CMS o↵er di↵erent layouts for di↵erent
formats of articles - news article, report, commentary, image gallery and so on. However
they are not made for people going creative. Integrating interactive graphics is often solved
by including an iFrames that calls an external source. The integration however is often
not very sophisticated; for example, the style of the external element does not match the
style of the website (di↵erent colors, fonts, shapes) or the width of the article is di↵erent to
the width of the graphic, which leads to either cutting o↵ the graphic or having scrollbars,
which essentially reduce readability. Furthermore today’s websites should be accessible
from any kinds of devices, whether it is a small smartphone or a huge 84-inch screen.
High tra�c news sites (like The New York Times or The Guardian) are well equipped for
all occasions, but smaller ones still seem to struggle with formats that are di↵erent to a
standard desktop screen size. So if we want to integrate a timeline into a news article, first
an integration feature has to be available within the CMS, second the style has to adjust
to the general styleguide of the website, and third the timeline has to be responsive and
adjust to di↵erent screen sizes - at least as much as the website itself - to be enjoyable on
as many devices as possible.

21

3.3 New approach 3 CREATING TIMELINES

3.3 New approach

After this extensive introduction into timelines, their usage, the building process and the
challenges we suggest an alternative that facilitates the creation of interactive timelines
to make them more accessible for a less technologically-inclined audience.

Idea We observed that the whole process starts with finding information about the time
and the details of an event from source documents. We imagine that this process could
already be facilitated, if there was a way to initially indicate weather a document contains
temporal information at all. This could be done by using natural language processing to
automatically detect temporal information within unstructured text. Available libraries
and methods enable this functionality, and are able to at least discover most temporal
expressions. We know that the results are not perfect, but they are still good enough to
provide sca↵olding for a visual timeline. Through curation and selection the timeline can
then be adjusted according to the author’s needs in an easy and quick way; that means
events can be edited, deleted, and moved around, as well as new events that are not part
of the source documents but known by the author can be added. We think the visual
curation process can not only speed up the process of creating a timeline, but also make
it much more enjoyable.

Processing Pipeline Figure 3.3 shows the three major steps of our idea. First, unstruc-
tured text is entered as input - that can be a news article, a Wikipedia page, a biography,
a historic text and the like. Inside the gearbox temporal information will be found and
extracted, and visualized on a timeline in step two. The visualization’s environment allows
for curation. The next gearbox takes the resulting curated data set and transforms it into
a non-editable and presentable timeline for publishing in step three.

Figure 3.3: An abstract representation of TimeLineCurator’s pipeline: (i) unstructured text input; (ii)
an authoring environment; (iii) curated timeline output.

22

3 CREATING TIMELINES 3.4 Timeline Authoring Model

3.4 Timeline Authoring Model

Based on the di↵erent approaches described above we introduce five timeline authoring
tasks and compare how these tasks are accomplished using the three di↵erent approaches
manual drawing, structured creation and the usage of TimeLineCurator. Figure 3.4
summarizes the di↵erences according to the descriptions made in Section 3.1 and to
according to previously introduced ideas and upcoming descriptions of TimeLineCurator.

The timeline generation process begins with browsing source documents, where the
author looks for event information. Browsing is defined as a form of search in which
the locations of potential search targets are known, but the identity of the search
targets may not be known a priori [5]. During this period, the author might identify
and extract events by highlighting or annotating relevant passages in documents,
adding events to a list or sketching a timeline on paper. To transfer these events to
a digital medium, the author must decide how to format the events, and determine
how to show or encode them. Finally, in some instances, an author updates the
timeline: events may be added, edited, or deleted to reflect new information, such as
in the case of an evolving news story.

Figure 3.4: Comparing the human time and e↵ort required to perform the five tasks encompassed by
our Timeline Authoring Model with common approaches and with TimeLineCurator.

Both common approaches are connected with high time exposure for the browsing and
extracting process as documents first have to be found and then read. The formatting
is obsolete for the manual drawing, but has to be done very carefully for the structured
creation, since the data format has to match specific guidelines. Showing as well as updating
in turn can be achieved quickly for the structured creation but takes high time exposure
when created manually.

23

3.4 Timeline Authoring Model 3 CREATING TIMELINES

Figure 3.5: Comparing the sequence of timeline authoring tasks: timeline curation (indicated by the
orange shaded areas) occurs later with TimeLineCurator. Tasks in blue fixed-width font are auto-
mated; all other tasks are performed by the author.

Our new tool, TimeLineCurator, was developed to overcome these di�culties. With
manual drawing and structured creation approaches, timeline curation was accom-
plished by iterating between the browse and extract tasks; with TimeLineCurator,
timeline curation is a visual process, swapping the order of the browse and show tasks
while automating the extract and format tasks, as indicated in Figure 3.5. Time-
LineCurator also explicitly supports the browsing of events from multiple documents
simultaneously, allowing, for instance, the author to compare multiple sources dis-
cussing the same subject or comparing subjects that do not obviously relate but might
have influenced one another. Finally, updating a timeline with TimeLineCurator is
easy, and does not require editing the source documents.

24

4 RELATED WORK

4 Related Work

TimeLineCurator touches several fields, therefore we split the discussion of relevant pre-
vious work into four parts. Figure 4.1 illustrates the three states our data undergoes and
which parts each chapter covers. First we look at general visualization authoring envi-
ronments, for general analytical as well as for journalistic purposes (red). Then we show
tools that generate timelines in several domains that use structured data as their input
(yellow). To give an overview of how structured temporal data could be generated from
unstructured text, we look at work that has been done for Entity Extraction as used in
natural language processing (green). And finally there are tools already that use NLP to
create visualizations and we will have a look at those as well (blue).

Figure 4.1: Illustrating the four parts we consider in our related work. From unstructured text processing,
over structured data sets to visualization environments and authoring tools.

4.1 Visualization Authoring Tools

Many tools are available that help creating all di↵erent kinds of visualizations. There
is almost one for every level of expertise. More options for customization however still
require more complex tools and more time for the author to familiarize with it. First we
show a few tools that can create a set of standard visualizations very easily and could be
used by anybody. Then we show those which require a higher level of technical expertise
and finally a few that were created especially for journalistic use.

General purpose tools for visualization presentation Popular and accessible
tools such as Tableau (http://tableau.com) and ManyEyes [48] provide the means
to generate, share, and publish visualizations without having to write any code. How-
ever, these tools expect structured data; it is di�cult to generate visualizations from
unstructured text data without wrangling the data into a structured form. In addi-
tion, these tools do not explicitly support the generation of visual event timelines. For
example, ManyEyes o↵ers a set of general-purpose visualizations and there is no vi-
sualization for event-based data within its repertory. Although Tableau is su�ciently
customizable that the visual appearance of a timeline can be achieved with elaborate
data transformations, this task is clearly not one of its primary design targets.

Custom visualization authoring environments Visual authoring tools such as
Lyra [39] and iVisDesigner [35] are more expressive, allowing the author to compose
visualizations with multiple layers and annotations. It is thus feasible to produce
a custom visual timeline, once again assuming that the event data is already in a
structured form. Since environments like Lyra and iVisDesigner provide more options

25

http://tableau.com

4.1 Visualization Authoring Tools 4 RELATED WORK

for customization and typically require more time to learn, they are less suitable for
fast and easy authoring than a specialized tool, such as those that are specific to
timeline authoring.

Authoring tools for journalists narrative visualization authoring environments
such as Ellipsis [38] and VisJockey [19] specifically target journalists. With these
tools, journalists can compose narrative sequences of common visualizations depict-
ing structured quantitative data; visual event timelines are not explicitly supported.
Narratives authored with VisJockey [19] further allow readers to trigger visualization
transitions with inline links in an accompanying text article, similar to the linking
between The New York Times’ interactive timelines and corresponding sections of
their accompanying articles. TimeLineCurator also relies on a linking between visu-
alization elements and corresponding sections of a text document, but these links are
established via natural language processing, whereas with VisJockey, these links are
established manually by the author.

26

4 RELATED WORK 4.2 Timeline Visualizations from Structured Event Data

4.2 Timeline Visualizations from Structured Event Data

Now focusing only on creating timelines, there are examples from di↵erent domains, where
they can automatically be created if an accordingly structured data set is available. Those
timelines either have the purpose of analyzing or of summarizing. And then there are
already several environments that enable a more or less comfortable creation of an event
timeline.

Tools for timeline analysis Though we focus primarily on timelines as a presen-
tation tool, timeline visualizations are also often used for data analysis. TimeSlice [52]
is a domain-agnostic analysis tool that a↵ords the faceted browsing of timelines con-
taining many events; these timelines are generated from structured event data. In the
medical domain, LifeLines [32] and its descendants are also used for analysis, wherein
an analyst can summarize and compare patient treatment timelines comprised of
event types specific to the treatment context; these events are recorded via manual
data entry by medical sta↵.

Law enforcement tools such as Criminal Activities Network [9] are used for data
analysis such as identifying crime patterns and discovering criminal associations, and
are once again suitable only for structured domain-specific data. Social media analysts
also use timelines for detecting events, trends, and anomalies, relying on structured
social media data [7]. TimeLineCurator does not require structured event data and
is portable across application domains.

News timelines In an ephemeral online news environment, timelines are a popular
way to convey an evolving story or to provide context. For example, Google News
Timeline (http://news.google.com) automatically aggregates news stories from sev-
eral thousand news sources and organizes them chronologically, while Evolutionary
Timeline Summarization [50] generates timelines based on a user query and identifies
the “relevance, coverage, coherence, and diversity” of that query inside many time-
stamped articles. However, both of these approaches return lists of events rather than
visual timelines. Moreover, they treat an entire document as a single entity character-
ized by the document creation time; finer-grained temporal information from within
the document is ignored.

Timeline authoring tools Many simple and accessible timeline authoring tools ex-
ist. Examples include TimeRime (http://timerime.com), Dipity (http://dipity.
com), Tiki-Toki (http://tiki-toki.com), and Timeglider (http://timeglider.
com). Some of these tools allow an author to add single events to an initially empty
timeline one at a time, while others provide the ability to connect to RSS, Twitter,
or other services that provide structured time-stamped data. Some of these tools are
easy to use, but not at all customizable.

The customizable tools most relevant to our current work are SIMILE’s Time-
line (http://simile-widgets.org/timeline), ProPublicas’s TimelineSetter (http:
//propublica.github.io/timeline-setter), WNYC’s Vertical Timeline (http:
//github.com/jkeefe/Timeline), and TimelineJS [61] from the Northwestern Uni-
versity Knight Lab. These tools require structured event data as input; they generate
timelines that can be embedded in websites. Advanced users can also make changes
to the underlying code and adjust it to suit their needs. However, the author must
first assemble and format a spreadsheet, JSON data set, or a correctly-formatted

27

http://news.google.com
http://timerime.com
http://dipity.com
http://dipity.com
http://tiki-toki.com
http://timeglider.com
http://timeglider.com
http://simile-widgets.org/timeline
http://propublica.github.io/timeline-setter
http://propublica.github.io/timeline-setter
http://github.com/jkeefe/Timeline
http://github.com/jkeefe/Timeline

4.2 Timeline Visualizations from Structured Event Data 4 RELATED WORK

CSV file containing event data. TimelineJS is perhaps the most widely-used timeline
authoring tool in newsrooms today. The timeline creation process is straightforward:
beginning with a Google Spreadsheet template, an author can fill in this spreadsheet
with events, each of which requires a date or date span, a title, a description of the
event, and, optionally, a link to an image, video, or other form of embeddable media.
Publishing the spreadsheet generates a visual timeline automatically. We compare
the experience of assembling and generating timelines using TimelineJS to that of
TimeLineCurator in Section 6.1.

28

4 RELATED WORK 4.3 Extracting Time Expressions from Unstructured Text

4.3 Extracting Time Expressions from Unstructured Text

The principals of how natural language processing (NLP) works was already discussed
in Section 2.1.2. The technique we need for extracting temporal information from un-
structured text is called Entity Extraction. It identifies for instance names, locations,
organizations, or dates inside unstructured text. To annotate dates in a standardized
form, the TimeML specification language for temporal information extraction [34] was
defined in 2003. It defines how to annotate events and temporal expressions inside un-
structured text. It became the international standard in 2009 (ISO-TimeML) and is used
within almost all current approaches.

Syntax-based recognition Environments such as Tango [46] and TARSQI (Tem-
poral Awareness and Reasoning Systems for Question Interpretation) [47] o↵er envi-
ronments that automatically add TimeML markup to news articles. Temporal entity
extraction is typically accomplished with hand-engineered deterministic rules that
use regular expressions and pattern interpretation to detect signal words referring
to anything temporal. Further improvements to these recognition approaches enable
normalization of the recognized temporal expressions with respect to a Document
Creation Time (DCT). For instance, the value of yesterday can be resolved to one
day before the DCT. Examples include TempEx Tagger [25], SUTime [8], Heidel-
Time [42], and TERNIP [62]. TimeLineCurator uses the Python-based TERNIP
system in its natural language processing pipeline. TERNIP uses the TARSQI ex-
traction engine [47] for recognition; TERNIP also normalizes temporal expressions
using a rule engine.

Context-dependent semantics Approaches that consider only the syntax of enti-
ties ignores the surrounding context and can lead to misinterpretation or ambiguities.
Newer approaches that incorporate machine learning use context-dependent seman-
tic parsing for entity extraction; examples include learning contextual rules from
question-answer pairs [18] or the use of various forms of weak supervision [2]. In con-
trast to these general-purpose systems, UWTime [21] is the first context-dependent
model for semantic parsing that handles the special case of temporal expressions,
where the additional step of normalization is required. Using the combination of
hand-engineered and trained rules, it considers the tense of a governing verb to deter-
mine if the temporal expression refers to the future or the past, and it determines if a
four-digit number refers to a year depending on the context. Incorporating the Java-
based UWTime system into TimeLineCurator as an alternative to TERNIP would be
interesting future work.

29

4.4 Visualizations from Unstructured Text 4 RELATED WORK

4.4 Visualizations from Unstructured Text

In our project we combine visual timeline authoring and natural language processing.
There were several projects taking that road already, even though exclusively focusing on
temporal expression to create visualizations has not been done yet, as far as we know.

Topic discovery and analysis Thematic analysis of many text documents is a
popular area of research. Tools such as Serendip [1] leverage natural language pro-
cessing to permit thematic analysis for documents at di↵erent scales, from individual
passages to documents to entire corpora. Meanwhile, a number of tools [10, 15, 22,
23] (those only being a selection) extract topics and keywords while also considering
each document’s creation time, allowing the analyst to observe topic changes over
time. These tools do not extract temporal information in the unstructured text of
documents; rather, they use bag-of-words models or more complex algorithms to de-
termine the importance of words, word combinations, or topics. Furthermore, these
tools are intended for data analysis rather than authoring or presentation.

Entity extraction and visual analytics Visual analytics systems such as Jig-
saw [13, 41] integrate entity extraction with visualization to show detected entities
such as dates from unstructured text documents in several ways. However, the use
of Jigsaw entails a high learning curve [12, 16], requires desktop installation, and is
again intended for data analysis rather than presentation.

Visualizing Wikipedia articles Date entity extraction has also been applied
to the generation of timeline and topic visualizations based on Wikipedia articles.
For example, LensingWikipedia [45] attempts to visualize human history through
Wikipedia’s annual event summary pages over the last 2000 years. It extracts
temporal and spatial information to find out “who did what to whom, when, and
where” [45]. It is a discovery environment restricted to those specific pages; users
cannot insert their own data and there is no support for authoring. Another example
is WikiChanges (http://sergionunes.com/p/wikichanges).

Date entity extraction is more accessible in TimeLineCurator than in previous
work, since our tool is browser-based, is intended for fast timeline authoring rather
than data analysis, and can ingest any unstructured text.

30

http://sergionunes.com/p/wikichanges

5 TIMELINECURATOR

5 TimeLineCurator

Before we started coding the prototype, we analyzed available tools, and decided to use
TimelineJS [61] as the state-of-the-art tool for comparison. In the following we point out
limitations of TimelineJS, and set up a list of requirements and goals for TimeLineCura-
tor based on that analysis. Afterwards we show selected steps from the iterative design
process, and finally present the architecture of TimeLineCurator.

5.1 Identifying TimeLineJS Limitations

Even though TimelineJS [61] seems to be the most popular tool for creating interactive
timelines, we learned abut several limitations and drawbacks when talking to current
users of TimelineJS - Section 6.5.1 will go into more detail about the user feedback. The
authoring process with TimelineJS falls into structured creation as defined in Section 3.1.2.
That approach requires the author to spend a lot of time and e↵ort on extracting and
formatting structured event data. We use that approach as primary comparison, and
describe the di↵erent experiences during the authoring process in Section 6.1.

We identified several drawbacks to how TimelineJS presents a timeline to the reader
(as shown in Figure 5.9f), which informed the design of presentation-ready timelines
exported from TimeLineCurator, described in Section 5.5.6. A TimelineJS widget
presents a zoomable and scrollable interactive timeline that invites the reader to
progress through the timeline with linear navigation from one event to another, be-
ginning with the first event in the timeline. TimelineJS does not provide an initial
overview of the temporal distribution of events: on opening, the horizontal timeline
view is centered on a specific date and only a small region is visible. By default
this first date corresponds to the earliest event in the timeline; while the user can
explicitly navigate by zooming out, it is not possible to simply set the start view to
show the entire timeline. Moreover, clutter and occlusion is a significant issue: glyphs
representing individual events are displayed along a narrow axis spanning the bottom
of the timeline, and the event labels placed above this axis overlap in regions where
multiple events occur.

31

5.2 Requirements & Goals 5 TIMELINECURATOR

5.2 Requirements & Goals

Based on the analysis of current timeline authoring tools and approaches we define several
requirements and goals, that a system should fulfill to o↵er a valuable alternative to the
existing approaches:

Automate event extraction As table 3.4 shows, the browsing, extracting and format-
ting of event data takes up much time in common approaches. Thus a new approach
should strive to reduce, if not eliminate those tasks. As soon as an event description
within unstructured text contains information about its time, the NLP should be able to
detect and extract it. That process saves the time that is usually needed to go through
a text manually; it also eliminates the uncertainty about whether a document contains
temporal information or not.

Accessible As seen in Section 4.3, recent advances in NLP enable a decent detection
and normalization of temporal references from unstructured text [62]. However those
packages and tools are not very accessible and require installation and often the ability to
handle code. Our timeline authoring tool aims to be accessible for everybody. It should
not require any installation - therefore it has to be browser-based. It should be easy to
understand - therefore match basic human-computer interaction principles. Considering
the basic principles should enable an intuitive handling also to authors without a highly
developed technical skill set. Any need for coding should be avoided.

Flexibility in input and formatting Since the formatting of the underlying data set
for current tools is one of the major issues for not using them, we want to create an
environment where the author doesn’t have to care about formatting and can just type in
free form text. Therefore the input, as well as the textareas in the event editing area, have
to accept any form of unstructured text. Even if the user accidentally enters something
incomprehensible (for example in the date input field, only digits make sense), he should
get immediate feedback with an advice to correct it.

Visual feedback at all times Often it can be disadvantageous when no visual feedback
is available during the creation process, as Victor points out in a Stanford HCI seminar
about “Drawing Dynamic Visualizations” [66]. Our timeline authoring system should
thus provide visual feedback as early and immediate as possible. After inserting a text,
temporal information is automatically extracted, formatted, and visualized immediately
(show). Also during further browsing and updating event data will constantly be updated
visually, as indicated in Figure 3.5. That immediate visual feedback is missing when
programming a timeline from scratch, or when using existing timeline authoring tools,
such as TimelineJS and others mentioned in Section 4.2. Without that intermediate
visual support, it sometimes might be di�cult to tell whether creating a visual timeline is
worth the e↵ort.

Allow for speculative browsing Finally, the ideal tool not only accelerates the au-
thoring process, but also helps discovering suitable documents. Documents that don’t
contain interesting temporal information about events could be ruled out immediately as
unsuitable for a timeline.

32

5 TIMELINECURATOR 5.3 Design Process

5.3 Design Process

TimeLineCurator passed several design cycles. To give an impression of the iterative
process we outline important steps on the way to its current state in the following.

5.3.1 Necessary elements

To fulfill above mentioned requirements we defined several elements, that an environment
needs to have. Those elements have to be easy to spot and immediately communicate
their functionality:

(a) Upload: A space where you can insert or upload text (start with having an input
field to copy in unstructured text)

(b) Document View: The original text with the temporal information highlighted (if
more than one document was inserted, ability to switch between documents needed)

(c) List View: A list with all dates that were found inside the document(s), sortable
by several criteria

(d) Timeline View: The centrepiece were events are displayed on the timeline. Events
are displayed as glyphs (distinguishing between date/duration, category, state of
curation)

(e) Editing Area: Area where a selected event can be modified (changing the date,
title, description text)

(f) Add single date: The possibility to add a single new date that is not connected
to a document

(g) Export: The possibility to export the timeline into a “cleaned-up” timeline

Additionally all views have to be connected with linked highlighting. Events have to
be selectable in all views (list, document, timeline) and simultaneously update the other
views (including the editing area). Figure 5.1 shows the very first scribble with annotations
for mentioned elements.

Figure 5.1: First scribble of a timeline generating tool on paper - with marks for list of needed elements

33

5.3 Design Process 5 TIMELINECURATOR

5.3.2 Design Iterations

On the basis of screenshots of di↵erent selected states of TimeLineCurator, we will explain
the development during the building process.

Figure 5.2: First steps with pre-processed files as input. a) Placing dates on timeline, b) Document
view added, c) Time periods and editing functionality for events added

First tentative steps to implement it digitally are shown in Figure 5.2. Primary goal
was to manage the alignment of dates on the timeline. We started with two separate
processes for the back-end and the front-end side. Text processing was done by running
a Python script locally, producing an output file that was then called by the JavaScript
code. The generated file was provided with TIMEX-tags which had the date as their value
(for instance, In <TIMEX2 VAL=”1958”>1958 </TIMEX2> Michael Jackson was born.).
Client-sided the values were extracted and translated into a Unix timestamp. With the
maximum and minimum values the scale of the timeline was calculated and single events
positioned accordingly. When selectin one date an automatic scrolling inside the document
view was triggered, to highlight the sentence they originate from. Therefore the original
text had to be available inside a separate scrollable view. The details of the selected
date had to be shown in yet another view. With AngularJS the selected date was made
editable, and the changes were immediately applied within the data set. The state shown
in Figure 5.2 (c) introduced the functionality to change the granularity of the date of an
event; for instance, 1958 could be extended with a month and a day to 29.08.1958 - even
the time of day could be added. We started o↵ only displaying dates (as circles), time
periods were added in the third step as well (as lines).

34

5 TIMELINECURATOR 5.3 Design Process

Figure 5.3: First cleaned-up version of TLC, where pre-processed documents could be selected as input.
Events were editable, the current state could be saved and downloaded as a “.tl”-file.

A first tidied up version is displaying in Figure 5.3. On the left side the author
could switch between the documents and the list view. A TLC-specific file format
with the ending “.tl” was introduced, to enable saving the current state of curation.
The file could then be uploaded in the next session to reproduce the state from before
(Additionally the current state was stored inside the browser’s local storage automatically
to prevent accidental data loss). The controls for Save/Export/Upload, as well as to add
a new document, were gathered in a bar above the timeline. The content of one date
(initially the sentence surrounding the temporal expression in the original document)
could be edited by clicking on it - the text would change into a textarea. The head-
line (initially set to “Enter headline”) was left to the author to formulate. Vague dates
that could not be placed on the timeline were gathered on the bottom of the timeline view.

Figure 5.4: Design process step 2: Including possibility of granularity change of date

35

5.3 Design Process 5 TIMELINECURATOR

After the visualization and curation part was running, the next step was to include
the event extraction part into the browser environment. With microframework Flask for
Python is is possible to transfer data between JavaScript and Python code and make it
run inside the browser. This enabled to upload and process unstructured text. Figure 5.4
shows the dialog box that opened up and let the author copy in any unstructured text.
The creation date of that text (if it was not the current date) had to be specified, to be
taken into account when calculating the values of the dates. With that version we started
asking people to have a look at the tool and thus got real user feedback, which again led
to several changes.

Figure 5.5: Rearrangement of the whole layout after evaluating first user feedback.

The next step, shown in Figure 5.5, introduced a completely new layout, where
document and list view were separated into two views. The timeline itself got the full
width of the browser window. Time spans were now part of the timeline and not aligned
underneath it anymore. Their glyph changed into having a bounding triangle on either
side. That way they seemed equally important than the circles, since they were taking
up roughly the same amount of space. Instead of waiting for the author to provide a
headline for a date, we decided taking the first five words of the sentence to at least give
a suggestion that can then easily be changed.

Figure 5.6 shows further changes based on user feedback as well as on own experience.
The color of each individual date could now be changed independent from its origin to
connect it to a track. The list view could be sorted according to several criteria. The
document selection inside the document view was solved more elegantly by showing a
drop-down menu when clicked. Both list and document view were enriched with a footer
bar, that summarizes the total number of events inside the current view. Keyboard
shortcuts were implemented (Arrow-keys to select previous/next date, Delete and Return
key to delete a date, Shift for selecting several dates). Dates could now be augmented
with media. The color of the date’s glyph became more saturated, as soon as it was
edited - that way it was easier to spot which dates were already curated and which stayed

36

5 TIMELINECURATOR 5.3 Design Process

Figure 5.6: Current state of TimeLineCurator in its version 0.3

untouched. The vertical distribution of the glyphs posed a problem up to this point,
because they were only stacked vertically, when they had exactly the same date. This
led to di�culties when selecting a date, some dates were not visible at all, when they
were too close together. The new layout started stacking dates to the top as soon as
they would overlap on the horizontal line. That loosened the whole view but introduced
the new problem, that more vertical space was necessary. So vertical scrolling had to be
added as soon as the dates pulled out of the viewport.

As last step we decided to add an alternative to the TimelineJS export. One that
looked more similar to the editing environment itself and also o↵ers access to the original
data. We chose to provide a non-editable version of TLC, where the Control Panel became
the read-only display, showing event details. Section 5.5.6 explains the di↵erent export
options in more detail.

5.3.3 Implementation

The back end of the system that provides the data handling (extract and format) is im-
plemented in Python. The TERNIP framework [62] together with the NLTK toolkit
(http://www.nltk.org) first split the document into sentences and then words (“tokeniz-
ing”). “Part-of-speech tagging” is applied and a list of tokens handed to the recognizer,
which identifies the temporal expressions. Those are sent to the normaliser which tries to
determine a concrete date or duration. The result is written as attribute (“VAL”) into a
TIMEX tag (based on TimeML [34]). The whole text is recomposed, enriched with the
TIMEX tags.

The micro web application framework Flask (http://flask.pocoo.org) enables call-
ing variables from Python script and using them inside our front-end environment, which
supports the show, curate, update, and present tasks. It is implemented in AngularJS
(http://angularjs.org). AngularJS o↵ers comfortable functionality for dynamic up-
dating and editing of elements inside the Document Object Model. The visualization

37

http://www.nltk.org
http://flask.pocoo.org
http://angularjs.org

5.3 Design Process 5 TIMELINECURATOR

is implemented with D3.js [4], a library that binds data to SVG elements and enables
comfortable updating and manipulation of the data. The whole system is hosted on the
Heroku cloud application platform (http://heroku.com), which runs the Python code on
the server side.

If the author exports the timeline into TLC’s own presentation mode, we store the
curated timeline data on Amazon’s Simple Storage Service (http://aws.amazon.com/s3).
Via Python script data is sent to the service, an Ajax request calls it from the TLC
presentation view. Storing the data in the cloud, enables us to generate a unique URL, that
can be shared and accessed from everywhere, not only the author’s working environment.

38

http://heroku.com
http://aws.amazon.com/s3

5 TIMELINECURATOR 5.4 Architecture

5.4 Architecture

The processing pipeline of TimeLineCurator can be explained in more detail based on
walking through the steps of the curation process. Figure 5.7 shows all the stages.

Figure 5.7: Processing pipeline for TimeLineCurator.

An author begins with an empty timeline, and can populate the timeline by uploading
unstructured document text. TimeLineCurator extracts events from this text using
natural language processing techniques; it first recognizes absolute temporal references
such as “October 30, 2014” or “2010” using the Python library TERNIP [62], which
is based on a large set of regular expressions and rules. In addition to single dates,
durations are also extracted, such as the reference “from 2 Sept 2014 to 31 Mar 2015”.
TERNIP also normalizes all relative temporal references such as “yesterday”, “since
Tuesday” or “next year”, giving them a value relative to the document creation time.
When this normalization does not result in a concrete date or span, the expression is
categorized as a vague date and assigned the value “????”. In many cases these are

39

5.4 Architecture 5 TIMELINECURATOR

genuinely non-specific temporal expression like a duration (“99 days”) or an interval
(“monthly”) that do not belong on a timeline; in other cases, these are expressions
that TERNIP failed to extract correctly but can be curated by the author to a mean-
ingful date or span. Next, TimeLineCurator formats the set of extracted dates into
structured JSON, which also includes the sentence containing each temporal reference
and its location within the source document.

Given this structured format, TimeLineCurator then shows the timeline, encod-
ing individual events as well as event spans along the timeline axis; vague dates are
not shown on the timeline, but are presented to the author separately. At this point,
the author can update the timeline; she can add, delete, merge, or edit events until
satisfied, including events associated with vague dates. This entire process can be
repeated any number of times with additional unstructured text. When ready to
present, the author can export the timeline, and at any time, the author can save
the state of an edited timeline to resume editing later.

40

5 TIMELINECURATOR 5.5 Interface & Design Rationale

5.5 Interface & Design Rationale

To give a better understanding of the interface’s functionality we will explain the specific
tasks and contents of the single views in more detail and explain the visual encoding.

5.5.1 Timeline View

The core of the tool is the timeline visualization itself. It provides the global overview
of all events. Information-dense areas are spread out so that there is no occlusion and a
simple navigation provided - an approach similar to Ferstay et al.’s Variant View [11].

Figures 1.1 and 5.9d show examples with many stacked and dodged glyphs, provid-
ing an overview where the temporal distribution of events is visible even in densely
populated areas of the timeline. There is no zooming or horizontal scrolling: the size
of the discrete events is fixed and the entire horizontal axis is shown at all times. As
a result, the author always has an overview of the full time range. Vertical scrollbars
appear when the events overflow the available vertical space, as a backstop solution to
ensure that arbitrarily dense time distributions can be curated. Typically, the final
curated version of the timeline exported for presentation does not require vertical
scrolling.

The horizontal time axis is scaled automatically to the range of time encompassed
by the active events, and will update if any addition, removal, or editing of an event
changes that range. The document creation time is indicated on the axis as a vertical
dashed line labeled ’today’.

An event corresponding to a single date is encoded as a circle l, while an event
span with a beginning date and an end date is encoded as a connecting bar of variable
length flanked by triangles ⌘–⇣. Vague dates corresponding to possible events, based
on temporal references like “the day after” or “summer” are encoded as a square
n and shown outside the horizontal range of the timeline axis, in the upper right
corner of this view, as in Figure 5.9c. Events are coloured by hue according the
six possible tracks (llllll), and this base univariate colour palette was selected
from ColorBrewer [14]. Glyphs corresponding to events that have already been edited
are more saturated than those corresponding to unedited events (l vs. l), for a
bivariate palette with 12 colors in total. By default, events from each successive
document text pasted into TimeLineCurator are assigned to a di↵erent track, but the
author can override this behaviour by explicitly selecting a colour track when loading
a new document (Figure 5.9b). Having multiple colour tracks can assist the author
in comparing timelines from multiple documents.

5.5.2 List View

The list view combines all events and can be sorted by several criteria. By default the list
is sorted according to the appearance of events within the original document - we found
that to be the preferred order to initially detect the document’s structure. The list can
additionally be sorted chronologically, by type of event (date, duration or vague), by state
of curation (was it edited yet or not?), by document or by track. Each list entry contains
the event glyph, its date and its title. An event that was deleted and thus is not displayed
on the timeline anymore will still be retrievable from the list view, but grayed and crossed
out - it can be recovered in the Control Panel. In the list view as well as in the document
view, a bar at the bottom shows a summary of the total number of events and vague dates.

41

5.5 Interface & Design Rationale 5 TIMELINECURATOR

5.5.3 Document View

The document view supports the growing trend in journalism of linking original
source documents to online news media, as with tools such as DocumentCloud
(http://documentcloud.org), following the demands for more transparency and in-
volvement of the readers [58]. In addition to supporting the curation process for
authors, the document view allows readers of the curated timeline to see the rela-
tionships between events and corresponding sentences in source documents. This
panel displays original unstructured document text, where all recognized temporal
references are highlighted in orange.

The green “plus”-button + in the top bar lets the author add a new document.
When clicking on it the input dialog as in Figure 5.9b opens up. If there is more than one
document, clicking on the document’s title which is colored according to its track, opens
up a list where the author can select another document. The displayed document will
automatically switch when an event from another document is selected over the timeline
or the list view.

5.5.4 Control Panel

The Control Panel on the bottom right allows the author to edit an event selected in
any of the other three views, as shown in Figure 5.9d. She can modify the date of an
event, turn a single event into a span, or vice versa; she can also edit the title and
description for an event by clicking on either of these fields. By default, the event
description is the sentence from which the event was extracted. When a vague date
is given a concrete date, its corresponding glyph is moved to its appropriate place in
the timeline visualization and becomes more saturated. The author can also delete
the event, reassign the event to another color track, or add media such as image to
it.

Figure 5.8:
Toolbox

The toolbar on the right side of the Control Panel o↵ers several options:

(a) Leads the author back “home”, where the title and the description of
the whole timeline can be edited; also tracks can be renamed here

(b) Export options to display the curated timeline: either as a read-only
version of TLC, or as TimelineJS project. More about the di↵erent
options in Section 5.5.6

(c) Download the curated data: either as TLC’s own “.tl”-file, as JSON
file or as Zip folder that contains the JSON file and a index.html. With
the Zip folder the author could host the TimelineJS-project on another
server - script and stylesheets are with absolute paths to their server of
origin

(d) Upload previously curated data: to continue working on a previous
state, the author can either restore the local storage data from the
previous session, or upload a “.tl”-file

(e) Create a new date, independent from any document

(f) (Only visible when more than one date selected) Merge selected dates
to one date (new date has value of primarily selected date)

(g) (Only visible when more than one date selected) Delete all selected ele-
ments

42

http://documentcloud.org

5 TIMELINECURATOR 5.5 Interface & Design Rationale

5.5.5 View Coordination and Navigation

Event selection is propagated as linked highlighting across all views, with
selected events highlighted in black, as shown in Figure 1.1. In the document
view, events can be selected by clicking on any sentence that includes
a temporal reference. Navigation is also linked across the views; when
clicking on an event in the Timeline Visualization View, the list view
and document view will scroll to the corresponding sections of the list
and document, respectively. Keyboard arrow keys and paging buttons
in the Control Panel will iterate through events using the current sort
order of the list view.

5.5.6 Presentation and Export

When the author is done with curating, he can export the timeline in two di↵erent ways.
Vague events that were not provided with a date will not be exported.

The TimeLineCurator presentation view is a read-only version very similar to
the editing interface, as shown in Figure 5.9e. The timeline is hosted on a shareable
unique URL. Coordinated navigation and selection across the views remain the same;
the Control Panel is replaced with an Event Details panel, in which any image media
associated with an event is shown.

A timeline can also be exported as a TimelineJS widget that can be downloaded
and embedded on the author’s site, as shown in Figure 5.9f. We provide TimelineJS
export capability because of its popularity, despite the drawbacks discussed in Sec-
tion 5.1.

5.5.7 Exemplary walkthrough

Figures 5.9a to 5.9f show several steps through the curation process of one example data
set. Figure 5.9a is the tool when opened up in the browser. It is empty with only an arrow
in the document view indicating where to start. To clarify we annotated the figure with
the names of the di↵erent views. When following the instruction to upload a document
an overlay appears as in Figure 5.9b. Here the author can insert text - in this case we
took the Wikipedia article about the “Berlin Wall” (http://en.wikipedia.org/wiki/
Berlin_Wall), copied the section “The Fall” and inserted it in here. We have to give it a
title and optionally determine a color. Because it is a Wikipedia article there is no specific
Document Creation Time, so we leave that as it is and press “Go!”. Figure 5.9c shows the
timeline immediately after the temporal extraction process is finished. It contains some
vague and falsely identified dates that can now be edited or deleted. In Figure 5.9d the
timeline has been cleaned up and the dates have been divided into two di↵erent categories
indicated by the two di↵erent colors. Figures 5.9eand 5.9f show the two di↵erent options
for export: TLC’s own export and TimelineJS’s.

43

http://en.wikipedia.org/wiki/Berlin_Wall
http://en.wikipedia.org/wiki/Berlin_Wall

5.5 Interface & Design Rationale 5 TIMELINECURATOR

(a) Initially, the timeline is empty. Orange anno-
tations show the four views: timeline view, list
view, document view, and control panel.

(b) Unstructured text is added via a popup dialog.
Optionally, the document creation time can be
specified below the input field.

(c) A timeline immediately after importing text,
with many vague and uncurated dates. General
timeline information can be modified when no
event is selected.

(d) Event dates, title, and description can be ad-
justed when an event is selected, it can also be
assigned to another track, enriched with images,
or deleted.

(e) Export option 1: a slightly modified read-only
version of TLC.

(f) Export option 2: the open-source tool Time-
lineJS [61].

Figure 5.9: A walkthrough of the TimeLineCurator curation process. We demonstrate this process
using unstructured document text from the “The Fall” section of the Wikipedia article on the Berlin
Wall (http://en.wikipedia.org/wiki/Berlin_Wall). The resulting timeline can be accessed at
http://goo.gl/SU1faP.

44

http://en.wikipedia.org/wiki/Berlin_Wall
http://goo.gl/SU1faP

6 ANALYSIS

6 Analysis

We evaluate TimeLineCurator in several ways. We benchmark its correctness in terms
of text extraction quality. We also compare its user experience to the structured
creation approach. We present instances where TimeLineCurator is used to rule out
documents that contain little or no interesting temporal information, and we present
examples of curated timelines and provide before and after images to show the changes
made in the curation process. Finally, we discuss preliminary feedback from target
users.

6.1 Extraction Error Benchmark

First we want to demonstrate how well the temporal information extraction works. There-
fore we did benchmark tests and compared the automated with the manual extraction.
The tests have been conducted by one of the authors of the VAST paper, thus familiarity
with the system was given. We are aware of the fact that this approach does not represent
the way a user would address the problem, but it gives an idea of the error rate and the
speed-up potential, which is hard to test during a real creation process, as every person
approaches the curation process very di↵erently.

The automated extraction process involved uploading unstructured document text
into TimeLineCurator and systematically checking every extracted event to verify that
it was recognized correctly; we also determined if incorrectly extracted dates required
editing or deletion. The manual extraction process involved reading the original
document text and performing manual data entry, copying all temporal references
and their surrounding sentences into a spreadsheet in the structured format required
for TimelineJS input. In this initial benchmark, the author’s judgement was restricted
to simply judging whether the expression correctly indicated a single event or a date
range. No judgement was used about whether an event was interesting enough to
merit inclusion on the timeline. Event titles or descriptions were not edited.

Figure 6.1: The results of the benchmark tests, which compares the gold standard manual creation of
an event set with the automated event extraction of TimeLineCurator.

The benchmark data sets were three Wikipedia articlesa and two recent news articlesb;
the two news articles were added to a single timeline. Figure 6.1 shows the quality
assessments of TimeLineCurator’s temporal expression extraction compared against
the gold standard of manual extraction. These results indicate that most of the dates
were identified correctly (an average of 65%), though some needed curation via editing

45

6.1 Extraction Error Benchmark 6 ANALYSIS

or deletion (an average of 29%), and a small fraction were not extracted (an average
of 6%). These results confirm that automatic extraction is a good match with our
expectations: the true positive rate is reasonable but far from perfect, and the false
negative rate is low. Thus, we deem that sca↵olded curation is a viable approach to
timeline authoring.

a
The history of Facebook (http://goo.gl/aKRKvr), the biography of pop musician Sam Smith

(http://goo.gl/dF4Gzm), and the biography W. A. Mozart (http://goo.gl/VTmwAF).
b
Both pertained to the topic of net neutrality http://goo.gl/wFSOJf and http://goo.gl/9cD2V2.

This benchmark also yielded qualitative insights on the kinds of expressions that
were incorrectly extracted. Incorrectly identified dates often were time spans, which
can be expressed in many di↵erent ways in prose. For example, in “The family
again went to Vienna in late 1767 and remained there until December 1768”, two
separate dates were automatically extracted, but the author combined them into
one time span during manual curation. Another reason for incorrectly extracted
events were temporal expressions that implicitly refer to a previously named date
rather than explicitly containing a year. The natural language processing misses
these expressions because it only considers the immediate context and incorrectly ties
them to the document’s creation date. The result is that historical texts incorrectly
have many dates assigned to “today” despite only containing dates from the distant
past. Another source of false positives are temporal expressions that are used as
names and do not refer to a specific event, such as Taylor Swift’s album title “1989”
or the TV Show “Last Week Tonight”.

Events that were missed by the automatic extraction were often those which re-
ferred to another event, such as “six days after the site launched” or possessive state-
ments, such as “last week’s vote”. In some cases these were extracted as vague dates,
and in others they were missed completely. Currently, the year recognition is limited
to Anno Domini years with four digits; references such as “13,000-12,000 BC” are
not handled.

The speedup when comparing the manual to the automated extraction benchmark tests
were that the automated extraction is between 2x and 3x faster. However as mentioned
above the benchmark test were an artificial scenario so those numbers don’t represent
end-user behavior for now.

Moreover, this benchmark scenario focused solely on the verification and correction of
event dates and did not involve any editorial judgment, such as deciding which events
to include in the timeline and how to embellish these dates with interesting event titles
and descriptions. However, we conjecture that the complete curation process with
TimeLineCurator is easier and preferable to the tedious manual structured creation
approach.

Nevertheless the tests revealed some usability issues as well as little problems with
the TERNIP rules. So after the first tests we conducted some changes for the curation
environment (such as the ability to navigate through dates using arrow keys and auto-
selecting the next event after event deletion), as well as tweaking and expanding the
Python based rules within TERNIP.

46

http://goo.gl/aKRKvr
http://goo.gl/dF4Gzm
http://goo.gl/VTmwAF
http://goo.gl/wFSOJf
http://goo.gl/9cD2V2

6 ANALYSIS 6.2 User Experience Comparison

6.2 User Experience Comparison

To also get feedback from a more realistic timeline authoring process, we conducted a
second benchmark, where we asked fellow grad students to go through the authoring
process.

We recruited six arms-length participants from our department who were una�li-
ated with the project and asked them to create coherent timelines. We provided
them with short text articles and asked them to make editorial judgements about
each event they encountered; they were also asked to curate event titles. Each au-
thor curated two timelines: first, one using manual structured data entry as required
by TimeLineJS [61] and second, one using TimeLineCurator. They were directed
to curate the timeline until they were fully satisfied and felt that it was ready to
be exported. All participants strongly preferred TimeLineCurator’s visual authoring
environment to the structured data entry required by TimelineJS, and they found
working with TimeLineCurator to be highly engaging. Every user encountered at
least some di�culties with the structured editing approach despite having a strong
technical background. One participant even abandoned the structured editing ap-
proach completely after a few minutes because it was so tedious. The curation time
from start to finish across participants is not directly comparable because the scope
of the editorial judgment performed during the curation process varied considerably
between them. This informal comparison of user experience provided encouraging
qualitative evidence that the design goals of our authoring system were met.

47

6.3 Speculative Browsing 6 ANALYSIS

6.3 Speculative Browsing

As mentioned previously we think TimeLineCurator is also a valuable tool for quickly
ruling out unsuitable documents. Figure 6.2 shows three examples of timelines where it
was possible to decide within a few seconds that the document is not a suitable source for
an engaging timeline. As soon as the text is processed by the script and the author sees
the visual timeline, the decision can basically be made immediately.

Figure 6.2: Timelines extracted from two news articles (http://goo.gl/YLkmSx, from Mar. 23,
2015 and http://goo.gl/W8qrtT, from Mar. 2, 2015) and a report from a science press release site
(http://goo.gl/jKRwM0, from Mar. 23, 2015). All three do not contain much temporal information
and thus can quickly be ruled out as a suitable basis for an interesting timeline.

48

http://goo.gl/YLkmSx
http://goo.gl/W8qrtT
http://goo.gl/jKRwM0

6 ANALYSIS 6.4 Curated Examples

6.4 Curated Examples

While working on the project, we curated many di↵erent timelines, for instance the history
of the fall of the Berlin Wall as documented in Figure 5.9 and the biography of W. A.
Mozart, as shown in Figure 6.3. Here the case of having several false results around
“today” comes into the picture (as mentioned in Section 6.1). Those are based on missing
context for events - an expression like “In August of that year” would be resolved to
August of the document’s creation year.

Figure 6.3: A timeline of composer W. A. Mozart’s biography http://en.wikipedia.org/wiki/
Mozart, both before and after curation. The resulting timeline can be accessed at http://goo.gl/
2JikND.

Many more examples are available in a gallery on the project page: http://cs.

ubc.ca/group/infovis/software/TimeLineCurator/#examples. All examples were ex-
ported with both TimelineJS and TimeLineCurator’s presentation view.

49

http://en.wikipedia.org/wiki/Mozart
http://en.wikipedia.org/wiki/Mozart
http://goo.gl/2JikND
http://goo.gl/2JikND
http://cs.ubc.ca/group/infovis/software/TimeLineCurator/#examples
http://cs.ubc.ca/group/infovis/software/TimeLineCurator/#examples

6.5 Use Cases 6 ANALYSIS

6.5 Use Cases

In addition to those artificial scenarios, that we conducted in our immediate vicinity and
where we defined the usage scenario, we also got feedback from real use cases. On the one
hand we interviewed people who were currently working on timeline projects or have had
experience creating timelines before, on the other hand we received voluntary feedback
from interested people who caught on to the online deployment of TimeLineCurator.

6.5.1 Solicited potential users

We conducted semi-structured interviews with eight people: seven journalists and one
policy researcher. Four of these individuals already had experience creating interac-
tive timelines and provided us with feedback about the strengths and limitations of
currently available timeline tools. Two of these individuals had pre-existing plans to
use a timeline authoring tool in an upcoming project.

Most journalists agreed on the point that using data visualizations within an article
traditionally is an afterthought and not an idea to start with. Most often it is something
they might think about at the end to add a graphical element to the story or to support a
statement with some numbers. Some also mentioned that they sometimes could see their
story as a timeline but wouldn’t know about available tools that enable a straightforward
and code-free creation. So if journalists decide for using supplemental material, such as
data visualizations they “either have to throw money at people to do it for them or they
decide for a non-perfect way to show information”.

Even though having the dates in that format would only require transferring them into
a spreadsheet, that step seemed to be a barrier for journalists that were not too established
in the world of digital tools and reported that they felt intimidated when having to deal
with new applications. Even though journalistic education includes more and more tools
for computer-assisted reporting and data journalism, some of the interviewees admitted
that they still weren’t too comfortable with using digital tools.

When we presented TimeLineCurator to these individuals and asked them to try it
out, their reaction was very positive and they remarked that it was very easy to
use. They enjoyed the approach of extracting temporal event data from unstructured
document text, and that they no longer had to start start with an empty spreadsheet
and add every event manually one at a time. The immediate visual feedback during
the authoring process was also highly appreciated.

One journalist said: “For the less geeky journalists who might be scared of time-
lines, this is a brilliant super-easy way to see what it might look like” and that Time-
LineCurator might be a good way to “break the barrier between the artiste writer and
the data journalist”.

We asked these individuals to speculate about possible kinds of stories that might
benefit from accompanying timelines: these included the unfolding of political scan-
dals, how amendment bills proceed in government, and biographies. They also pro-
posed several use cases that we had not previously considered, such as using Time-
LineCurator for data analysis rather than timeline authoring for presentation. One
idea involved using TimeLineCurator with court documents when reporting on a trial
to better understand the context of a criminal or legal case. Another possible use case
is fact-checking during investigative analysis. Typically, details are verified through
two reliable sources before publication. A journalist that we spoke to imagined that
TimeLineCurator might accelerate fact-checking for temporal events and finding mis-

50

6 ANALYSIS 6.5 Use Cases

matches between sources. Finally, a third use case involved using TimeLineCurator
to prepare for interviews, to quickly catch up the subject’s biography or background.

6.5.2 Unsolicited current users

In contrast to the ideas above that are potential use cases for prospective users of
TimeLineCurator, we can also report on use cases from people in di↵erent communi-
ties who already used TimeLineCurator for their own projects after it was deployed
and publicized. One author was a digital humanities researcher who created a time-
line to see the historical development of deaf churches in England. Another author
was a user experience professional who created a timeline to accompany the profile
of his company.

51

6.5 Use Cases 6 ANALYSIS

52

7 DISCUSSION & FUTURE WORK

7 Discussion & Future Work

7.1 Discussion

TimeLineCurator o↵ers a new way of exploring the temporal structure of a document
in order to make the process of creating timelines enjoyable rather than arduous.
We designed the system under the assumption that entity extraction through natural
language processing is decent but not perfect, and can serve to support human-in-
the-loop curation. Moreover, even if the extraction were perfect and all date events
and spans were extracted correctly, there are still many subtasks involved in timeline
curation that will need nuanced human judgement for quite some time.

One of those subtasks is the decision which information is relevant to inform about
the desired level of detail. Interactivity potentially allows an unlimited number of events,
but that doesn’t mean the reader should receive an unlimited number - it’s rather the
opposite: in many cases less is more and it’s the journalist’s job to decide what information
is relevant. The reader ideally trusts the journalist’s ability to make that decision - to
be on the safe side original documents and sources could be made accessible, enabling
fact-checking or further investigations if required.

Figuring out the filtering remains an issue in modern AI in general. In a recent
interview with Ken Goldberg (a computer engineer, roboticist, and artist) he points out
that for computers the “ability to distinguish, to filter out what’s interesting, that’s still
elusive” [60]. In that spirit tools like TimeLineCurator are far away from replacing the
creative and considered human labor but they are rather meant to support and foster
creativity. When talking about creative tasks like film or music production Goldberg says:
“All the new tools for making movies and making music have been enormously beneficial
for creativity. And computers and robots are relieving us of tedious tasks like handling
documents and filing. That allows us to spend more of our time being creative”[60].

One more general cause for thought especially in the journalistic context: stories are
meant to be told in an interesting and challenging way. And even if authors were familiar
with all the tools to create di↵erent visualizations, data graphs and other interactive
elements they still should only be considered when meaningful for the purpose and not
only because it is possible. We could find many examples where media elements seem to
be thrown into a story without contributing any value and are rather distracting than
helpful. That was especially the case when a new “multimedia storytelling” movement
tried to reach for the Pulitzer Prize winning Snow Fall project from The New York Times
in 2012 [64]. But people tend to overlook that Snow Fall was a “six-month sixteen-person
multimedia project”[54] with an intriguing story - and huge projects like that are not
meant for the daily news reporting. Many stories can be told in words compellingly,
saying it with a catchphrase: “Text isn’t broken” [54]. Along these lines it also makes
sense to first think about if a timeline is suitable for a story - and as we explained before
TimeLineCurator can o↵er support for that decision as well.

During the creation process of TLC we learned that besides filtering and curating
timeline events to create cleaned-up presentations, TimeLineCurator may as well serve
for analysis tasks such as fact-checking, where researches have to compare information
throughout di↵erent documents. Again that task involves elaborate human judgement,
which will probably not be undertaken by machines too quickly.

53

7.2 Future Work 7 DISCUSSION & FUTURE WORK

7.2 Future Work

Generally the idea of TimeLineCurator was approved by many people from the broader
community. Still some requests for refinements were made, as well as suggestions for
elaborating or integration with existing tools and workflows.

Upgrading NLP Several requests concerned the improvement of the automated event
extraction. We decided to use existing tools to handle the NLP task and they are known
to be working fairly well, but not perfectly. Even though we did some manual corrections
and additions inside the framework we used, it would make sense to replace the NLP part
with newer tools as they are emerging. For example, more elaborate tools that consider
context-dependent semantics become more widely available [21] and could be implemented.
Also, moving to a toolkit that supports multiple languages would be worthwhile to allow
the use of TimeLineCurator outside of English-speaking countries.

More choices for export TLC creates a structured event data set so it would be
straightforward to o↵er more options for export. All tools mentioned in Section 4.2 that
require structured event data as input could basically be added. Also, more options for
customization concerning the style of a resulting timelines were asked for. Right now
the author is restricted to the default style of the export. He could only download the
project and changes the stylesheets - but that involves a fair amount of understanding the
structure of web projects as well as some coding experience. Even though that was not
part of the original plan, more options for customizing the output could be an interesting
future implementation.

Integration with existing tools and workflows There are several tools available
that approach not only one type of visualization but a broader field. Therefore it would
be interesting to integrate TLC’s approach into one of those existing tools. Systems that
do textual analysis of documents would be a good opportunity for integration. One system
in particular is Overview [6], an open-source tool for investigative journalism that supports
the analysis of large collections of documents by sorting them according to topics and tags.
Overview even o↵ers an API which handles the document engine and allows the creation
of own visualizations. Building a plugin for Overview will very likely be the next step to
further distribute TLC.

54

8 Conclusion

In this thesis we gave an overview of how temporal data and events are expressed and
displayed - historically as well as currently. Many use cases across several domains showed
our literacy with the metaphor of time marching along a horizontal line. We pointed out
benefits of their usage within journalistic environments and analyzed common approaches
to create them, which are static manually created timelines, as well as digitally-generated
timelines that are based on structured data sets. We introduced a model that divided the
timeline creation process into five di↵erent tasks, which are: Browse, Extract, Format,
Show, and Update. Based on this model, we introduced our new approach to this process,
by applying techniques from natural language processing and integrating the creation
process into a visual environment.

We presented TimeLineCurator, a visual timeline authoring system that recognizes
temporal expressions within unstructured document text. It accelerates the event-
extraction process and fulfills two broader tasks. First, it enables authors to create
polished timelines from interesting documents within only a few minutes. Second, it
enables speculative browsing, which lets authors eliminate temporally uninteresting
documents from consideration within seconds. TimeLineCurator can be used by a
broad community of authors including those without a strong technical background,
because it is easily accessible, has a simple user interface, and does not require any
programming. It lowers the access barrier for timeline creation for a broad set of
potential authors, including journalists, who would like to work visually rather than
via manual data entry into spreadsheets. TimeLineCurator can directly create two
forms of curated timeline: the popular TimelineJS and our own presentation format
that provides an information-dense overview. Moreover, the resulting set of curated
events can be exported as a structured data set, opening up further possibilities be-
yond these two currently-supported presentation formats. Interviews and community
feedback provided evidence that the TimeLineCurator approach of sca↵olded curation
built on top of imperfect automatic entity extraction provides useful and appealing
functionality in several application domains.

55

56

References

[1] E. Alexander et al. “Serendip: Topic model-driven visual exploration of text cor-
pora”. In: Proc. IEEE Conf. Visual Analytics Science and Technology (VAST). 2014,
pp. 173–182.

[2] Y. Artzi and L. Zettlemoyer. “Weakly supervised learning of semantic parsers for
mapping instructions to actions”. In: Trans. Assoc. Computational Linguistics 1
(2013), pp. 49–62.

[3] L. Boroditsky. “Metaphoric structuring: understanding time through spatial
metaphors”. In: Cognition 75.1 (2000), pp. 1–28.

[4] M. Bostock, V. Ogievetsky, and J. Heer. “D3: Data-driven documents”. In: IEEE
Trans. Visualization and Computer Graphics (Proc. InfoVis) 17.12 (2011), pp. 2301–
2309.

[5] M. Brehmer and T. Munzner. “A multi-level typology of abstract visualization
tasks”. In: IEEE Trans. Visualization and Computer Graphics (Proc. InfoVis) 19.12
(2013), pp. 2376–2385.

[6] M. Brehmer et al. “Overview: The design, adoption, and analysis of a visual docu-
ment mining tool for investigative journalists”. In: IEEE Trans. Visualization and
Computer Graphics (Proc. InfoVis) 20.12 (2014), pp. 2271–2280.

[7] J. Chae et al. “Spatiotemporal social media analytics for abnormal event detection
and examination using seasonal-trend decomposition”. In: Proc. IEEE Conf. Visual
Analytics Science and Technology (VAST). 2012, pp. 143–152.

[8] A. X. Chang and C. D. Manning. “SUTime: A library for recognizing and normalizing
time expressions”. In: Proc. Intl. Conf. Language Resources and Evaluation (LREC).
2012, pp. 3735–3740.

[9] H. Chen et al. “Visualization in law enforcement”. In: Proc. Extended Abstracts ACM
SIGCHI Conf. Human Factors in Computing Systems (CHI) (2005), pp. 1268–1271.

[10] W. Dou et al. “HierarchicalTopics: Visually exploring large text collections using
topic hierarchies”. In: IEEE Trans. Visualization and Computer Graphics (Proc.
VAST) 19.12 (2013), pp. 2002–2011.

[11] J. A. Ferstay, C. B. Nielsen, and T. Munzner. “Variant View: Visualizing sequence
variants in their gene context”. In: Trans. IEEE Visualization and Computer Graph-
ics (Proc. InfoVis) 19.12 (2013), pp. 2546–2555.

[12] C. Görg, Z. Liu, and J. Stasko. “Reflections on the evolution of the Jigsaw visual
analytics system”. In: Information Visualization 13 (2014), pp. 336–345.

[13] C. Görg et al. “Combining computational analyses and interactive visualization for
document exploration and sensemaking in Jigsaw”. In: IEEE Trans. Visaulization
and Computer Graphics (TVCG) 19.10 (2013), pp. 1646–1663.

[14] M. Harrower and C. A. Brewer. “ColorBrewer.org: An online tool for selecting colour
schemes for maps”. In: Cartographic Journal 40.1 (2003), pp. 27–37.

[15] S. Havre et al. “ThemeRiver: Visualizing thematic changes in large document collec-
tions”. In: IEEE Trans. Visualization and Computer Graphics (TVCG) 8.1 (2002),
pp. 9–20.

[16] Y. A. Kang and J. T. Stasko. “Examining the use of a visual analytics system for
sensemaking tasks: Case studies with domain experts”. In: IEEE Trans. Visualiza-
tion and Computer Graphics (Proc. VAST) 18.12 (2012), pp. 2869–2878.

57

[17] W. Klein. “How time is encoded”. In: The expression of time 3 (2009), pp. 1–43.

[18] T. Kwiatkowski et al. “Scaling semantic parsers with on-the-fly ontology matching”.
In: Proc. Conf. Empirical Methods in Natural Language Processing (EMNLP). 2013,
pp. 1545–1556.

[19] B. C. Kwon et al. “VisJockey: Enriching data stories through orchestrated visual-
ization”. In: Proc. Computation + Journalism Posters. 2014.

[20] E Làdavas. “Asymmetries in processing horizontal and vertical dimensions”. In:
Memory & cognition 16.4 (1988), pp. 377–382.

[21] K. Lee et al. “Context-dependent semantic parsing for time expressions”. In: Proc.
Conf. Assoc. Computational Linguistics (ACL). 2014, pp. 1437–1447.

[22] Y. Liu et al. “Evaluating exploratory visualization systems: A user study on how
clustering-based visualization systems support information seeking from large doc-
ument collections”. In: Information Visualization 12.1 (2013), pp. 25–43.

[23] D. Luo et al. “EventRiver: Visually exploring text collections with temporal refer-
ences”. In: IEEE Trans. Visualization and Computer Graphics (TVCG) 18.1 (2012),
pp. 93–105.

[24] I. Mani. “Computational Modeling of Narrative”. In: Synthesis Lectures on Human
Language Technologies 5.3 (2012), pp. 1–142.

[25] I. Mani and G. Wilson. “Robust temporal processing of news”. In: Proc. Conf. Assoc.
Computational Linguistics (ACL). 2000, pp. 69–76.

[26] Scott McCloud. Understanding comics. William Morrow Paperbacks, 1993.

[27] M. Mitchell. “The Visual Representation Of Time In Timelines, Graphs, And
Charts”. In: Conference paper delivered to the Australian & New Zealand Commu-
nication Association Conference 2004. (2004). url: http://epublications.bond.
edu.au/hss%5C_pubs/107/.

[28] T. Munzner. Visualization Analysis and Design. CRC Press, 2014.

[29] J. Olsson and M. Boldt. “Computer forensic timeline visualization tool”. In: Digital
Investigation 6 (2009), pp. 78–87.

[30] R. Pasts. “Why Time is so Now”. In: Rethinking History: The Journal of Theory
and Practice 16.2 (2012), pp. 303–317.

[31] C. Plaisant, R. Mushlin, and A. Snyder. “LifeLines: using visualization to enhance
navigation and analysis of patient records.” In: Proceedings of the AMIA Symposium.
American Medical Informatics Association (1998).

[32] C. Plaisant et al. “LifeLines: Visualizing personal histories”. In: Proc. ACM SIGCHI
Conf. Human Factors in Computing Systems (CHI). 1996, pp. 221–227.

[33] J. Priestley. A description of a chart of biography. Printed at Warrington, 1765, p. 5.
url: http://books.google.com/books?hl=en%5C&lr=%5C&id=w5QBAAAAQAAJ%
5C&pgis=1.

[34] J. Pustejovsky et al. “TimeML: Robust specification of event and temporal expres-
sions in text”. In: Fifth Intl. Wkshp. Computational Semantics (IWCS). 2003.

[35] D. Ren, T. Hollerer, and X. Yuan. “iVisDesigner: Expressive interactive design of
information visualizations”. In: IEEE Trans. Visualization and Computer Graphics
(Proc. InfoVis) 20.12 (2014), pp. 2092–2101.

[36] D. Rosenberg. “Joseph Priestley and the Graphic Invention of Modern Time”. In:
Studies in Eighteenth Century Culture 36 (2007), pp. 55–103.

58

http://epublications.bond.edu.au/hss%5C_pubs/107/
http://epublications.bond.edu.au/hss%5C_pubs/107/
http://books.google.com/books?hl=en%5C&lr=%5C&id=w5QBAAAAQAAJ%5C&pgis=1
http://books.google.com/books?hl=en%5C&lr=%5C&id=w5QBAAAAQAAJ%5C&pgis=1

[37] D. Rosenberg and A. Grafton. Cartographies of time: A history of the timeline.
Princeton Architectural Press, 2013.

[38] A. Satyanarayan and J. Heer. “Authoring narrative visualizations with Ellipsis”. In:
Computer Graphics Forum (Proc. EuroVis) 33.3 (2014).

[39] A. Satyanarayan and J. Heer. “Lyra: An interactive visualization design environ-
ment”. In: Computer Graphics Forum (Proc. EuroVis) 33.3 (2014).

[40] R. N. Shepard and S. Hurwitz. “Upward direction, mental rotation, and discrimina-
tion of left and right turns in maps”. In: Cognition 18.1-3 (1984), pp. 161–193.

[41] J. Stasko, C. Görg, and R. Spence. “Jigsaw: Supporting investigative analysis
through interactive visualization”. In: Information Visualization 7.2 (2008), pp. 118–
132.

[42] J. Strötgen and M. Gertz. “Multilingual and cross-domain temporal tagging”. In:
Language Resources and Evaluation 47.2 (2013), pp. 269–298.

[43] Edward R Tufte. The Visual Display Of Quantitative Information. Vol. 2. Graphics
press Cheshire, CT, 1983, p. 28.

[44] B. Tversky, S. Kugelmass, and A. Winter. “Cross-Cultural and Developmental
Trends in Graphic Productions”. In: Cognitive Psychology 23.4 (1991), pp. 515–
557.

[45] R. Vadlapudi et al. “LensingWikipedia: Parsing text for the interactive visualization
of human history”. In: Proc. IEEE Conf. Visual Analytics Science and Technology
(VAST) Poster Compendium. 2012, pp. 247–248.

[46] M. Verhagen et al. “Annotation of temporal relations with Tango”. In: Proc. Intl.
Conf. Language Resources and Evaluation (LREC). 2006.

[47] M. Verhagen et al. “Automating temporal annotation with TARSQI”. In: Conf.
Assoc. Computational Linguistics Poster Proceedings. 2005, pp. 81–84.

[48] F. B. Viégas et al. “ManyEyes: A site for visualization at internet scale”. In: IEEE
Trans. Visualization and Computer Graphics (TVCG) 13.6 (2007), pp. 1121–1128.

[49] R. L. Walter, S. Berezin, and A. Teredesai. “ChronoZoom: Travel Through Time for
Education, Exploration, and Information Technology Research”. In: Proceedings of
the 2nd annual conference on Research in information technology (2013), pp. 31–36.

[50] R. Yan et al. “Evolutionary timeline summarization: A balanced optimization frame-
work via iterative substitution”. In: Proc. ACM SIGIR Conf. Information Retrieval.
2011, pp. 745–754.

[51] J. S. Yi et al. “Toward a deeper understanding of the role of interaction in informa-
tion visualization”. In: Visualization and Computer Graphics, IEEE Transactions
on 13.6 (2007), pp. 1224–1231.

[52] J. Zhao et al. “TimeSlice: Interactive faceted browsing of timeline data”. In: Proc.
ACM Conf. Advanced Visual Interfaces (AVI). 2012, pp. 433–436.

59

Web References

[53] S. Archibald and D. Rosenberg (Cabinet Magazine). A Timeline of Timelines.
03/2004. http://goo.gl/h6yX3p. (Last accessed: 15/05/2015).

[54] D. Thompson (The Atlantic). ’Snow Fall’ Isn’t the Future of Journalism - And that’s
not a bad thing. 21/12/2012. http://goo.gl/KtZ3xy. (Last accessed: 15/05/2015).

[55] J. DelViscio and D. Overbye (The New York Times). The Higgs, From Theory to
Reality. 10/2013. http://goo.gl/39DW8Z. (Last accessed: 15/05/2015).

[56] S. Pulham G. Blight and P. Torpey (The Guardian). Arab spring: an interactive
timeline of Middle East protests. 05/01/2012. http://goo.gl/V9UHgR. (Last ac-
cessed: 20/04/2015).

[57] University of Maryland Human Computer Interaction Lab. EventFlow: Visual Anal-
ysis of Temporal Event Sequences and Advanced Strategies for Healthcare Dis-
covery. Last update: 2014. http://www.cs.umd.edu/hcil/eventflow. (Last accessed:
15/05/2015).

[58] S. Rogers (Mother Jones). Hey wonk reporters, liberate your data! 24/04/2014.
http://goo.gl/cbhgtk. (Last accessed: 15/05/2015).

[59] D. Rosenberg (Cabinet Magazine). The Trouble with Timelines. 03/2004.
http://goo.gl/HDqrv3. (Last accessed: 15/05/2015).

[60] J. Carstensen (Nautilus Magazine). Robots Can’t Dance - Why the singularity is
greatly exaggerated. 22/01/2015. http://nautil.us/issue/20/creativity/robots-cant-
dance. (Last accessed: 15/05/2015).

[61] Northwestern University Knight Lab. TimelineJS - Beautifully crafted timelines that
are easy and intuitive to use. 2013. http://timeline.knightlab.com. (Last accessed:
15/05/2015).

[62] C. Northwood. TERNIP: Temporal Expression Recognition and Normalisation in
Python. 2010. http://github.com/cnorthwood/ternip. (Last accessed: 15/05/2015).

[63] Outercurve Foundation. ChronoZoom - Zoom through all of time. 2013.
http://chronozoom.tumblr.com/about. (Last accessed: 15/05/2015).

[64] J. Branch (The New York Times). Snow Fall - The Avalanche at Tunnel Creek.
22/12/2012. http://goo.gl/Q2WXqv. (Last accessed: 15/05/2015).

[65] C. Tominski and W. Aigner. The TimeViz Browser - A Visual Survey of
Visualization Techniques for Time-Oriented Data. Last update: 28/11/2013.
http://www.timeviz.net. (Last accessed: 15/05/2015).

[66] B. Victor. Drawing Dynamic Visualizations, Stanford HCI Seminar. 01/02/2013.
http://vimeo.com/66085662. (Last accessed: 15/05/2015).

60

A Appendices

A.1 Contents of the CD

1. Thesis: PDF file and LATEX-source file of this document

2. Code

TimeLineCurator To run TimeLineCurator locally, a virtual environment has to
be set up (How-to-setup-venv.txt included in folder). The currently running version
can be accessed online http://tl-generator.herokuapp.com/; The code is also
available on Github: http://github.com/jo-fu/TimeLineCurator

TLC Export The export view calls data from Amazon’s Simple Storage Service,
but is initially set to a fallback dataset. It is available online: http://www.cs.ubc.
ca/group/infovis/software/TimeLineCurator/tlcExport/; the code is also on
Github: http://github.com/jo-fu/TLC-Export

3. Figures used in this thesis, named according to their Figure number inside the text

4. References: papers and PDF prints of the web pages cited in this thesis, named
according to their reference number

5. Video: explaining idea and functionality of TimeLineCurator (can also be accessed
here: http://vimeo.com/jofu/tlc

6. Presentation: PDF file with slides of the final presentation

A.2 VAST Paper

The following paper has been written prior to this work and was submitted to the
IEEE Conference on Visual Analytics Science and Technology (IEEE VAST 2015, http:
//ieeevis.org) on March 31, 2015. Notification about results of the first review cycle
will be sent out June 6, 2015 - so after this thesis was handed in.

61

http://tl-generator.herokuapp.com/
http://github.com/jo-fu/TimeLineCurator
http://www.cs.ubc.ca/group/infovis/software/TimeLineCurator/tlcExport/
http://www.cs.ubc.ca/group/infovis/software/TimeLineCurator/tlcExport/
http://github.com/jo-fu/TLC-Export
http://vimeo.com/jofu/tlc
http://ieeevis.org
http://ieeevis.org

TimeLineCurator:
Interactive Authoring of Visual Timelines from Unstructured Text

Johanna Fulda, Matthew Brehmer, and Tamara Munzner Member, IEEE

Fig. 1: The browser-based visual timeline authoring tool TimeLineCurator, showing a timeline of Scandinavian pop music, where each
colour corresponds to a country; access the interactive timeline at http://goo.gl/0bHlvA.

Abstract— We present TimeLineCurator, a browser-based authoring tool that automatically extracts event data from temporal refer-
ences in unstructured text documents using natural language processing and encodes them along a visual timeline. Our goal is to
facilitate the timeline creation process for journalists and others who tell temporal stories online. Current solutions involve manually
extracting and formatting event data from source documents, a process that tends to be tedious and error prone. With TimeLineCu-
rator, a prospective timeline author can quickly identify the extent of time encompassed by a document, as well as the distribution
of events occurring along this timeline. Authors can speculatively browse possible documents to quickly determine whether they are
appropriate sources of timeline material. TimeLineCurator provides controls for curating and editing events on a timeline, the ability
to combine timelines from multiple source documents, and export curated timelines for online deployment. We evaluate TimeLineCu-
rator through a benchmark comparison of entity extraction error against a manual timeline curation process, a preliminary evaluation
of the user experience of timeline authoring, a brief qualitative analysis of its visual output, and a discussion of prospective use cases
suggested by members of the target author communities following its deployment.

Index Terms—System, timelines, authoring environment, time-oriented data, journalism.

1 INTRODUCTION

Event timelines are an effective way to present stories and provide
context to an audience. The initial motivation for our work was the
use of timelines by journalists for presentation, but they are common
in many other domains including medicine, history, education, and law
enforcement.

• Johanna Fulda is with the University of Munich (LMU). Email:
mail@johannafulda.de.

• Johanna Fulda, Matthew Brehmer, and Tamara Munzner are with the
University of British Columbia. E-mail:
{jfulda,brehmer,tmm}@cs.ubc.ca.

Manuscript received 31 Mar. 2015; accepted 1 Aug. 2015; date of
publication xx xxx 2015; date of current version xx xxx 2015.
For information on obtaining reprints of this article, please send
e-mail to: tvcg@computer.org.

When presented alongside an accompanying text, a timeline pro-
vides a succinct overview for the article in the form of a temporal
index that indicates the chronological extent of the article, as well as
the number and distribution of events across this extent; a chronolog-
ical understanding is achieved through the use of a spatial metaphor.
Interactive visual timelines such as those employed by the Timeline
iOS application [61] or by the New York Times1 offer an immediate
overview of an article’s chronology and a means for the reader to ori-
ent herself within this chronology as she reads.

Despite the prevalence of stories with a fundamentally temporal
structure, visual timelines are scarce; there are many articles2 that sim-
ply list events in a chronological order without providing any visual
overview of their chronology or the temporal distribution of events.

Why are visual timelines so uncommon? Based on the first author’s
experience working in the graphics department of a major German
news publication, as well as interviews with journalists, we know that

1For example, see Timeline: The Higgs, From Theory to Reality [10]
2See these timelines about Edward Snowden [19] or flight MH370 [39].

the timeline authoring process is too difficult: it is tedious, error-prone,
and time-consuming.

Journalists are accustomed to working with daily or weekly dead-
lines; this constraint is not conducive to the time-consuming manual
creation of visual timelines using illustration tools, or to the creation
of formatted event lists required by template-based timeline genera-
tion tools [29, 43]. Furthermore, there is often little guarantee that a
timeline generated via either means will be visually compelling or of
benefit to the reader. As this benefit can only be gauged after the time-
line is created, the significant time investment is often deemed to not
be worth it. Finally, another use of a timeline is to provide additional
background context for a story, including events that may not appear in
the accompanying text article; locating and browsing additional source
documents for these timelines can be very time-consuming.

For prospective authors willing to devote time to timeline genera-
tion, the creation process can be highly unsatisfying. They may be un-
aware of appropriate tools, or these tools may be difficult to integrate
into an existing work environment; for instance, many journalists can-
not install software on their computers without support from a central
IT authority. Even browser-based tools may deliver results that are not
simple to incorporate into the newsroom’s content management sys-
tem, or results that do not adhere to the publication’s style guidelines,
leading to issues that cannot be resolved without coding experience.

We propose an alternative to manual illustration or tools that require
structured event data: the TimeLineCurator approach is illustrated in
Figure 2. We use natural language processing to automatically ex-
tract temporal information from unstructured text input. We explicitly
assume that this extraction provides results that are not perfect, but
are good enough to provide scaffolding for interactive visual curation
to accelerate the timeline authoring process. The output is a curated
timeline.

Fig. 2: An abstract representation of TimeLineCurator’s pipeline: (i) un-
structured text input; (ii) an authoring environment; (iii) curated timeline
output.

Contributions: Our primary contribution is TimeLineCurator, the
web-based visual timeline authoring system shown in Figure 1. It
allows for the fast and easy creation of a structured temporal event
dataset from unstructured document text, combining imperfect natural
language processing and “human in the loop” authoring. With Time-
LineCurator, an author can speculatively browse a document’s tem-
poral structure; she can quickly rule out documents as unsuitable for
timelines within seconds, or interactively curate suitable documents
to refine an event set within minutes, receiving constant visual feed-
back throughout the curation process. Our secondary contribution is a
Timeline Authoring Model, which we use to position TimeLineCurator
relative to other timeline generation approaches in terms of goals and
tasks.
Outline: We begin by discussing related work in Section 2 and our
design process in Section 3. In Section 4 we present our Timeline Au-
thoring Model and the architecture and processing pipeline of Time-
LineCurator. Section 5 contains an overview of the interface and ratio-
nale for our design choices. We evaluate TimeLineCurator in five ways
in Section 6. We discuss our results in Section 7 and present possible
directions for future work. Section 8 summarizes our contributions.

2 RELATED WORK

Our discussion of relevant previous work includes visualization au-
thoring tools, tools for generating visual timelines from structured
event data, and techniques that leverage natural language processing,
entity extraction, and metadata extraction from text documents.

2.1 Visualization Authoring Tools
For almost every level of expertise there exist ways to create visu-
alizations. Visualization authoring tools that require higher levels of
technical expertise provide more options for customization.
General purpose tools for visualization presentation: Popular and
accessible tools such as Tableau [59] and ManyEyes [66] provide the
means to generate, share, and publish visualizations without having
to write any code. However, these tools expect structured data; it is
difficult to generate visualizations from unstructured text data without
wrangling the data into a structured form. In addition, these tools do
not explicitly support the generation of visual event timelines. For ex-
ample, ManyEyes offers a set of general-purpose visualizations and
there is no visualization for event-based data within its repertory. Al-
though Tableau is sufficiently customizable that the visual appearance
of a timeline can be achieved with elaborate data transformations, this
task is clearly not one of its primary design targets.
Custom visualization authoring environments: Visual authoring
tools such as Lyra [55] and iVisDesigner [50] are more expressive, al-
lowing the author to compose visualizations with multiple layers and
annotations. It is thus feasible to produce a custom visual timeline,
once again assuming that the event data is already in a structured form.
Since environments like Lyra and iVisDesigner provide more options
for customization and typically require more time to learn, they are
less suitable for fast and easy authoring than a specialized tool, such
as those that are specific to timeline authoring.
Authoring tools for journalists: narrative visualization authoring en-
vironments such as Ellipsis [54] and VisJockey [32] specifically tar-
get journalists. With these tools, journalists can compose narrative
sequences of common visualizations depicting structured quantitative
data; visual event timelines are not explicitly supported. Narratives au-
thored with VisJockey [32] further allow readers to trigger visualiza-
tion transitions with inline links in an accompanying text article, simi-
lar to the linking between the New York Times’ interactive timelines
and corresponding sections of their accompanying articles. Time-
LineCurator also relies on a linking between visualization elements
and corresponding sections of a text document, but these links are
established via natural language processing, whereas with VisJockey,
these links are established manually by the author.

2.2 Timeline Visualizations from Structured Event Data
Assuming the data is already available in a structured form, there are
several tools for generating timelines; some of these target specific
application domains, while others are domain-agnostic.
Tools for timeline analysis: Though we focus primarily on time-
lines as a presentation tool, timeline visualizations are also often used
for data analysis. TimeSlice [75] is a domain-agnostic analysis tool
that affords the faceted browsing of timelines containing many events;
these timelines are generated from structured event data. In the medi-
cal domain, LifeLines [47] and its descendants are also used for analy-
sis, wherein an analyst can summarize and compare patient treatment
timelines comprised of event types specific to the treatment context;
these events are recorded via manual data entry by medical staff. Law
enforcement tools such as Criminal Activities Network [9] are used
for data analysis such as identifying crime patterns and discovering
criminal associations, and are once again suitable only for structured
domain-specific data. Social media analysts also use timelines for de-
tecting events, trends, and anomalies, relying on structured social me-
dia data [7]. TimeLineCurator does not require structured event data
and is portable across application domains.
News timelines: In an ephemeral online news environment, time-
lines are a popular way to convey an evolving story or to provide
context. For example, Google News Timeline [21] automatically ag-
gregates news stories from several thousand news sources and orga-
nizes them chronologically, while Evolutionary Timeline Summariza-
tion [74] generates timelines based on a user query and identifies the
“relevance, coverage, coherence, and diversity” of that query inside
many time-stamped articles. However, both of these approaches return

lists of events rather than visual timelines. Moreover, they treat an en-
tire document as a single entity characterized by the document creation
time; finer-grained temporal information from within the document is
ignored.
Timeline authoring tools: Many simple and accessible timeline au-
thoring tools exist. Examples include TimeRime [28], Dipity [12],
Tiki-Toki [67], and Timeglider [40]. Some of these tools allow an au-
thor to add single events to an initially empty timeline one at a time,
while others provide the ability to connect to RSS, Twitter, or other ser-
vices that provide structured time-stamped data. Some of these tools
are easy to use, but not at all customizable.

The customizable tools most relevant to our current work are SIM-
ILE’s Timeline [29], ProPublicas’s TimelineSetter [48], WNYC’s Ver-
tical Timeline [3], and TimelineJS [43] from the Northwestern Uni-
versity Knight Lab. These tools require structured event data as input;
they generate timelines that can be embedded in websites. Advanced
users can also make changes to the underlying code and adjust it to
suit their needs. However, the author must first assemble and format a
spreadsheet, JSON dataset, or a correctly-formatted CSV file contain-
ing event data. TimelineJS [43] is perhaps the most widely-used time-
line authoring tool used in newsrooms today. The timeline creation
process is straightforward: beginning with a Google Spreadsheet tem-
plate, an author can fill in this spreadsheet with events, each of which
requires a date or date span, a title, a description of the event, and, op-
tionally, a link to an image, video, or other form of embeddable media.
Publishing the spreadsheet generates a visual timeline automatically.
We compare the experience of assembling and generating timelines
using TimelineJS to that of TimeLineCurator in Section 6.1.

2.3 Extracting Time Expressions from Unstructured Text
The relevant Natural Language Processing (NLP) technique for ex-
tracting temporal information from unstructured text is entity extrac-
tion: identifying words or phrases inside unstructured text that repre-
sent names, locations, organizations, and dates. In particular, we focus
on dates. The TimeML specification language for temporal informa-
tion extraction [49] defines how to annotate events and temporal ex-
pressions inside unstructured text. It became the international standard
in 2009 (ISO-TimeML) and is used by most current approaches.
Syntax-based recognition: Environments such as Tango [63] and
TARSQI (Temporal Awareness and Reasoning Systems for Ques-
tion Interpretation) [64] offer environments that automatically add
TimeML markup to news articles. Temporal entity extraction is typi-
cally accomplished with hand-engineered deterministic rules that use
regular expressions and pattern interpretation to detect signal words
referring to anything temporal. Further improvements to these recog-
nition approaches enable normalization of the recognized temporal
expressions with respect to a Document Creation Time (DCT). For
instance, the value of yesterday can be resolved to one day before the
DCT. Examples include TempEx Tagger [37], SUTime [8], Heidel-
Time [58], and TERNIP [44]. TimeLineCurator uses the Python-based
TERNIP system in its natural language processing pipeline. TERNIP
uses the TARSQI extraction engine [64] for recognition; TERNIP also
normalizes temporal expressions using a rule engine.
Context-dependent semantics: Approaches that consider only the
syntax of entities ignores the surrounding context and can lead to mis-
interpretation or ambiguities. Newer approaches that incorporate ma-
chine learning use context-dependent semantic parsing for entity ex-
traction; examples include learning contextual rules from question-
answer pairs [31] or the use of various forms of weak supervision [2].
In contrast to these general-purpose systems, UWTime [33] is the first
context-dependent model for semantic parsing that handles the spe-
cial case of temporal expressions, where the additional step of nor-
malization is required. Using the combination of hand-engineered and
trained rules, it considers the tense of a governing verb to determine
if the temporal expression refers to the future or the past, and it deter-
mines if a four-digit number refers to a year depending on the context.
Incorporating the Java-based UWTime system into TimeLineCurator
as an alternative to TERNIP would be interesting future work.

2.4 Visualizations from Unstructured Text
TimeLineCurator brings together visual timeline authoring with natu-
ral language processing. This section discusses previous projects that
similarly combine visualization with natural language processing.
Topic discovery and analysis: Thematic analysis of many text docu-
ments is a popular area of research. Tools such as Serendip [1] lever-
age natural language processing to permit thematic analysis for doc-
uments at different scales, from individual passages to documents to
entire corpora. Meanwhile, a number of tools [14, 15, 16, 26, 34, 35]
extract topics and keywords while also considering each document’s
creation time, allowing the analyst to observe topic changes over time.
These tools do not extract temporal information in the unstructured
text of documents; rather, they use bag-of-words models or more com-
plex algorithms to determine the importance of words, word combina-
tions, or topics. Furthermore, these tools are intended for data analysis
rather than authoring or presentation.
Entity extraction and visual analytics: Visual analytics systems
such as Jigsaw [22, 57] integrate entity extraction with visualization to
show detected entities such as dates from unstructured text documents
in several ways. However, the use of Jigsaw entails a high learning
curve [23, 30], requires desktop installation, and is again intended for
data analysis rather than presentation.
Visualizing Wikipedia articles: date entity extraction has also been
applied to the generation of timeline and topic visualizations based on
Wikipedia articles [62, 45]. For example, LensingWikipedia attempts
to visualize human history through Wikipedia’s annual event summary
pages over the last 2000 years. It extracts temporal and spatial infor-
mation to find out “who did what to whom, when, and where” [62].
It is a discovery environment restricted to those specific pages; users
cannot insert their own data and there is no support for authoring.

Date entity extraction is more accessible in TimeLineCurator than
in previous work, since our tool is browser-based, is intended for fast
timeline authoring rather than data analysis, and can ingest any un-
structured text.

3 PROCESS

TimeLineCurator was created through an iterative refinement process
with multiple rounds of requirements gathering, designing, prototyp-
ing, and deployment, following standard practice in visualization.
TimeLineCurator is an authoring system that targets a broad set of
user communities, rather than a very focused set of target users as
in a typical visualization design study [56]. We identified journalists
as one obvious potential user community, but also solicited feedback
from other communities throughout this design cycle.

3.1 Initial Requirements and Prototyping
Our initial requirements gathering was primarily based on the first au-
thor’s experience working in the graphics department in a major Ger-
man newspaper, and our assessment of existing systems as discussed
in Section 2. We quickly built an initial prototype in order to test our
ideas, and steadily refined it based on feedback from potential users.

3.2 Deployment and Collecting Community Feedback
We first demonstrated an early version of TimeLineCurator to a jour-
nalism professor and a policy researcher; both had a need to present
timeline data to readers and were familiar with TimelineJS. Shortly
after, we deployed TimeLineCurator online3 and publicized it locally
to faculty at the University of British Columbia Journalism School
and to members of a local Hacks/Hackers Meetup group. We also
publicized it more broadly to our extended professional network via
email and Twitter. Interest in TimeLineCurator then grew following
publicity at the 2015 NICAR conference for computer-assisted report-
ing [11, 24, 36, 73]. We were also able to gather feedback and in-
formation about use cases from several prospective timeline authors

3http://www.cs.ubc.ca/group/infovis/software/
TimeLineCurator/

who contacted us with feature requests and questions. Section 6.5 dis-
cusses the full set of use cases that we learned about from all of these
prospective constituencies. In addition to these direct contacts, we also
could indirectly gauge interest based on increasing traffic to the Time-
LineCurator site, with several thousand visits and many hundreds of
unique users trying out the freely available tool.

3.3 Identifying TimeLineJS Limitations
TimelineJS [43] is perhaps the most popular tool for creating and pre-
senting interactive timelines online. Despite its popularity, we iden-
tified several limitations by gathering feedback from several current
users of TimelineJS who we came into contact with as part of the
deployment process described above. We refer to the authoring pro-
cess with TimelineJS as structured creation, which involves a signifi-
cant amount of human time and effort while extracting and formatting
structured event data. We discuss this process further in Section 4, and
we compare the experience of authoring timelines using TimelineJS to
that of TimeLineCurator in Section 6.1.

We identified several drawbacks to how TimelineJS presents a time-
line to the reader (as shown in Figure 5f), which informed the design
of presentation-ready timelines exported from TimeLineCurator, de-
scribed in Section 5.6. A TimelineJS widget presents a zoomable
and scrollable interactive timeline that invites the reader to progress
through the timeline with linear navigation from one event to another,
beginning with the first event in the timeline. TimelineJS does not
provide an initial overview of the temporal distribution of events: on
opening, the horizontal timeline view is centered on a specific date and
only a small region is visible. By default this first date corresponds to
the earliest event in the timeline; while the user can explicitly navi-
gate by zooming out, it is not possible to simply set the start view to
show the entire timeline. Moreover, clutter and occlusion is a signifi-
cant issue: glyphs representing individual events are displayed along a
narrow axis spanning the bottom of the timeline, and the event labels
placed above this axis overlap in regions where multiple events events
occur.

4 TIMELINE AUTHORING MODEL

In this section, we introduce several timeline authoring tasks, and
we compare how these tasks are accomplished using existing manual
drawing and structured creation approaches to how these tasks are car-
ried out using TimeLineCurator. These differences are summarized in
Table 1. We also define several goals that a timeline authoring system
should address.

Browse Extract Format Show Update
Manual Drawing high high none high high
Structured Creation high high high low low
TimeLineCurator low none none low low

Table 1: Comparing the human time and effort required to perform the
five tasks encompassed by our Timeline Authoring Model with previous
approaches and with TimeLineCurator.

4.1 Timeline Authoring Tasks
The timeline generation process begins with browsing source doc-
uments, where the author looks for event information. Browsing is
defined as a form of search in which the locations of potential search
targets are known, but the identity of the search targets may not be
known a priori [6]. During this period, the author might identify and
extract events by highlighting or annotating relevant passages in doc-
uments, adding events to a list, sketching a timeline on paper or with
Post-it notes on a wall. To transfer these events to a digital medium,
the author must decide how to format the events, and determine how
to show or encode them. Finally, in some instances, an author up-
dates the timeline: events may be added, edited, or deleted to reflect
new information, such as in the case of an evolving news story.
Manual drawing: When satisfied with the results of the browsing
and extracting process, the author can manually draw a timeline us-

Fig. 3: Comparing the sequence of timeline authoring tasks: time-
line curation (indicated by the orange shaded areas) occurs later with
TimeLineCurator. Tasks in blue fixed-width font are automated;
all other tasks are performed by the author.

ing an illustration program: event formatting is not required. Showing
the timeline can be very time-consuming. While standard graphic de-
sign tools can be used for building a temporal scaffold, events must be
added to the timeline manually one at a time. A positive feature of this
approach is that the author has a significant amount of creative license
when performing this task. As a result, manual drawing can lead to
intricate and engrossing timelines, such as xkcd’s “Movie Narrative
Charts” [41]. However, the manual illustration approach to timeline
generation is clearly inappropriate for evolving stories, as updating
the timeline with additional events may require rescaling the whole
timeline, or readjusting and redrawing significant portions of it. The
result of the manual drawing process is most likely a static graphic,
used for print products or as a graphical element in a digital medium.
Structured creation: Several alternatives to manual timeline illustra-
tion exist. However, these approaches produce timelines that cannot be
easily customized, or require a programming ability beyond a typical
author’s skill set. Structured timeline generation tools like Timeline-
Setter [48] and TimelineJS [43] require that event items are formatted
in a structured table of dates with event descriptions. Provided with
structured event data, showing the timeline is performed quickly, as
timeline rendering is performed by the program or tool. Updating the
timeline is also straightforward, as the author only needs to add more
formatted events to the structured event dataset and the timeline will be
updated automatically. For evolving news stories, structured creation
is a much more viable approach than manual drawing.

4.2 Requirements for a Visual Timeline Authoring System

Automate extraction and formatting: A new approach to timeline
authoring should strive to reduce or eliminate the need to manually ex-
tract and format event data. Randall Munroe, the author of xkcd, has
remarked that he drew his “Movie Narrative” timelines [41] manually
not out of preference, but because no existing tool could automatically
extract event timelines from movie scripts [42]; automatic generation
of these timeline visualizations is now possible [60], however this ap-
proach requires structured event data.
Accessible: Recent advances in natural language processing allow for
the extraction and formatting of temporal references from unstructured
text [44]. However, natural language processing packages and tools
require installation and programming ability; furthermore, they do not
visualize their results. A timeline authoring tool should therefore be
accessible: it should be browser-based to avoid the need to install any
software, and it should provide a flexible means to import unstructured
text. It should also be easy to learn and use, appealing to authors
without a highly developed technical skill set; in other words, it should
require no programming.
Visual feedback during curation: A timeline authoring tool should
provide intermediate visual feedback when browsing, showing, and
updating event data, as indicated in Figure 3. When programming a
timeline from scratch, or when using an existing timeline authoring
tool such as TimelineJS [43] or others mentioned in Section 2.2, there
is no intermediate visual feedback during the authoring process; the
hazards of delayed feedback have been noted previously [65]. Without

intermediate visual support, it is difficult to determine whether creat-
ing a timeline is worth the effort.
Accelerate process: Finally, an ideal tool should accelerate the au-
thoring process: an author should be able to curate events from suitable
documents in minutes, and rule out unsuitable documents in seconds.
Summary: Our new tool, TimeLineCurator, was developed to over-
come these difficulties. With manual drawing and structured creation
approaches, timeline curation was accomplished by iterating between
the browse and extract tasks; with TimeLineCurator, timeline curation
is a visual process, swapping the order of the browse and show tasks
while automating the extract and format tasks, as indicated in Figure 3.
TimeLineCurator also explicitly supports the browsing of events from
multiple documents simultaneously, allowing, for instance, the author
to compare multiple sources discussing the same subject or comparing
subjects that do not obviously relate but might have influenced one an-
other. Finally, updating a timeline with TimeLineCurator is easy, and
does not require editing the source documents.

4.3 Architectural Instantiation
We now discuss the concrete instantiation of this authoring model
through the data processing pipeline of TimeLineCurator, as illustrated
in Figure 4.

An author begins with an empty timeline, and can populate the
timeline by uploading unstructured document text. TimeLineCurator
extracts events from this text using natural language processing tech-
niques; it first recognizes absolute temporal references such as “Octo-
ber 30, 2014” or “2010” using the Python library TERNIP [44], which
is based on a large set of regular expressions. In addition to single
dates, durations are also extracted, such as the reference “from 2 Sept
2014 to 31 Mar 2015”. TERNIP also normalizes all relative temporal
references such as “yesterday”, “since Tuesday” or “next year”, giving
them a value relative to the document creation time. When this nor-
malization does not result in a concrete date or span, the expression is
categorized as a vague date and assigned the value “????”. In many
cases these are genuinely non-specific temporal expression like a du-
ration (“99 days”) or an interval (“monthly”) that do not belong on a
timeline; in other cases, these are expressions that TERNIP failed to
extract correctly but can be curated by the author to a meaningful date
or span. Next, TimeLineCurator formats the set of extracted dates into
structured JSON, which also includes the sentence containing each
temporal reference and its location within the source document.

Given this structured format, TimeLineCurator then shows the
timeline, encoding individual events as well as event spans along the
timeline axis; vague dates are not shown on the timeline, but are pre-
sented to the author separately. At this point, the author can update the
timeline; she can add, delete, merge, or edit events until satisfied, in-
cluding events associated with vague dates. This entire process can be
repeated any number of times with additional unstructured text. When
ready to present, the author can export the timeline, and at any time,
the author can save the state of an edited timeline to resume editing
later.
Implementation: The back end of the pipeline that provides the data
handling for the extract and format tasks is implemented in Python.
The front end that supports the show, curate, update, and present
tasks is implemented in D3.js [4] and AngularJS [20]. The system
is hosted on the Heroku cloud application platform [27], which runs
the Python code on the server side. The micro web application frame-
work Flask [18] links together the server-side Python script with the
client-side HTML, JavaScript and CSS code.

5 INTERFACE AND DESIGN RATIONALE

TimeLineCurator is a web-based single-page multiple-view authoring
application that can be used to produce and export embeddable visual
timeline widgets. The interface has four panels coordinated through
linked highlighting and navigation, depicted in Figures 1 and 5: the
Timeline Visualization at the top, the List View on the lower left, the
Document View in the lower middle, and the Control Panel on the

Fig. 4: Processing pipeline for TimeLineCurator.

lower right. These panels are initially empty, as in Figure 5a. Fig-
ure 5b shows the dialog window where the author pastes unstructured
text and sets the date corresponding to “today” in the document; if
left unspecified, the current date is used as the the document creation
time. The initial set of automatically extracted events then populates
the interface, as shown in Figure 5c.

5.1 Timeline Visualization View
The Timeline Visualization view provides an information-dense global
view with no occlusion and minimal navigation, an approach similar
in spirit to the previous work of Variant View [17]. Figures 1 and 5d
show examples with many stacked and dodged glyphs, providing an
overview where the temporal distribution of events is visible even in
densely populated areas of the timeline. There is no zooming or hor-
izontal scrolling: the size of the discrete events is fixed and the entire
horizontal axis is shown at all times. As a result, the author always has
an overview of the full time range. Vertical scrollbars appear when the
events overflow the available vertical space, as a backstop solution to
ensure that arbitrarily dense time distributions can be curated. Typi-
cally, the final curated version of the timeline exported for presentation
does not require vertical scrolling.

The horizontal time axis is scaled automatically to the range of time
encompassed by the active events, and will update if any addition,
removal, or editing of an event changes that range. The document
creation time is indicated on the axis as a vertical dashed line labeled
’today’.

An event corresponding to a single date is encoded as a circle l,
while an event span with a beginning date and an end date is encoded
as a connecting bar of variable length flanked by triangles ⌘–⇣. Vague
dates corresponding to possible events, based on temporal references
like “the day after” or “summer” are encoded as a square n and shown
outside the horizontal range of the timeline axis, in the upper right cor-
ner of this view, as in Figure 5c. Events are coloured by hue according
the six possible tracks (llllll), and this base univariate colour
palette was selected from ColorBrewer [25]. Glyphs corresponding to
events that have already been edited are more saturated than those cor-
responding to unedited events (l vs. l), for a bivariate palette with
12 colors in total. By default, events from each successive document
text pasted into TimeLineCurator are assigned to a different track, but
the author can override this behaviour by explicitly selecting a colour
track when loading a new document (Figure 5b). Having multiple

colour tracks can assist the author in comparing timelines from multi-
ple documents.

5.2 List View
Fast scanning across many events is supported through the List View.
Multiple sort options support browsing and linear navigation accord-
ing to multiple different criteria. This view lists all of the events and
vague dates; each list entry is comprised of an event glyph, a date, and
an event title. Initially, the first five words of the sentence from which
the event was extracted is assigned as the event’s title.

Events can be sorted according to the location within each docu-
ment, by event type (l, ⌘–⇣, or n), by event status (l or l4, where
the 4 in addition to saturation redundantly encodes that an event has
been edited), by track (llllll), by date, or by event title. Events
deleted from the timeline remain in this list, and their deleted status is
represented by crossing out the date and title text, changing the row
background colour to a darker grey, and reducing the glyph’s alpha
value.

5.3 Document View
The Document View supports the growing trend in journalism of link-
ing original source documents to online news media, as with tools
such as DocumentCloud [13], following the demands for more trans-
parency and involvement of the readers [51]. In addition to supporting
the curation process for authors, the Document View allows readers of
the curated timeline to see the relationships between events and corre-
sponding sentences in source documents. This panel displays original
unstructured document text, where all recognized temporal references
are highlighted in orange. The control bar at the top is coloured ac-
cording to the assigned track and allows the author to toggle between
which document is shown, while the : button adds a new document.

5.4 Control Panel
The Control Panel on the bottom right allows the author to edit an
event selected in any of the other three views, as shown in Figure 5d.
She can modify the date of an event, turn a single event into a span, or
vice versa; she can also edit the title and description for an event by
clicking on either of these fields. By default, the event description is
the sentence from which the event was extracted. When a vague date
is given a concrete date, its corresponding glyph is moved to its appro-
priate place in the timeline visualization and becomes more saturated.
The author can also delete the event, reassign the event to another
colour track, or add media such as image to it. Finally, the author can
add new single events manually.

5.5 View Coordination and Navigation
Event selection is propagated as linked highlighting across all views,
with selected events highlighted in black, as shown in Figure 1. In the
Document View, events can be selected by clicking on any sentence
that includes a temporal reference. Navigation is also linked across the
views; when clicking on an event in the Timeline Visualization View,
the List View and Document View will scroll to the corresponding
sections of the list and document, respectively. Keyboard arrow keys
and paging buttons in the Control Panel will iterate through events
using the current sort order of the List View.

5.6 Presentation and Export
When the author is satisfied with her curated timeline, she can export
the timeline so that it can be shared online. Vague events are not ex-
ported. We provide two ways for an author to present their timeline.
The TimeLineCurator presentation view is a read-only version very
similar to the editing interface, as shown in Figure 5e. The timeline is
hosted on a shareable unique URL. Coordinated navigation and selec-
tion across the views remain the same; the Control Panel is replaced
with an Event Details panel, in which any image media associated with
an event is shown.

A timeline can also be exported as a TimelineJS [43] widget that
can be downloaded and embedded on the author’s site, as shown in

Figure 5f. We provide TimelineJS export capability because of its
popularity, despite the drawbacks discussed in Section 3.3.

6 RESULTS

We evaluate TimeLineCurator in several ways. We benchmark its cor-
rectness in terms of text extraction quality. We also compare its user
experience to the structured creation approach. We present instances
where TimeLineCurator is used to rule out documents that contain lit-
tle or no interesting temporal information, and we present examples
of curated timelines and provide before and after images to show the
changes made in the curation process. Finally, we discuss preliminary
feedback from target users.

6.1 Extraction Error Benchmark
Our first benchmark is primarily intended to gauge the quality of the
automatic extraction compared to manual extraction of temporal infor-
mation from unstructured text, and is narrow in scope. The automated
extraction process involved uploading unstructured document text into
TimeLineCurator and systematically checking every extracted event
to verify that it was recognized correctly; we also determined if in-
correctly extracted dates required editing or deletion. The manual ex-
traction process involved reading the original document text and per-
forming manual data entry, copying all temporal references and their
surrounding sentences into a spreadsheet in the structured format re-
quired for TimelineJS input. In this initial benchmark, the author’s
judgement was restricted to simply judging whether the expression
correctly indicated a single event or a date range. No judgement was
used about whether an event was interesting enough to merit inclusion
on the timeline, and event titles or descriptions were not edited.

The benchmark datasets were three Wikipedia articles4 and two re-
cent news articles5; the two news articles were added to a single time-
line. Figure 6 shows the quality assessments of TimeLineCurator’s
temporal expression extraction compared against the gold standard of
manual extraction. These results indicate that most of the dates were
identified correctly (an average of 65%), though some needed curation
via editing or deletion (an average of 29%), and a small fraction were
not extracted (an average of 6%). These results confirm that automatic
extraction is a good match with our expectations: the true positive rate
is reasonable but far from perfect, and the false negative rate is low.
Thus, we deem that scaffolded curation is a viable approach to time-
line authoring.

Fig. 6: The results of the benchmark tests, which compares the gold
standard manual creation of an event set with the automated event ex-
traction of TimeLineCurator.

This benchmark also yielded qualitative insights on the kinds of ex-
pressions that were incorrectly extracted. Incorrectly identified dates
often were time spans, which can be expressed in many different ways
in prose. For example, in “The family again went to Vienna in late
1767 and remained there until December 1768” [71], two separate
dates were automatically extracted, but the author combined them into
one time span during manual curation. Another reason for incorrectly
extracted events were temporal expressions that implicitly refer to a
previously named date rather than explicitly containing a year. The
natural language processing misses these expressions because it only
considers the immediate context and incorrectly ties them to the docu-
ment’s creation date. The result is that historical texts incorrectly have

4The history of Facebook [69], the biography of pop musician Sam
Smith [70], and the biography W. A. Mozart [71].

5Both pertained to the topic of net neutrality [38, 53].

(a) Initially, the timeline is empty. Annotations in orange demarcate the four main
views: Timeline View, List View, Document View, and Control Panel.

(b) Unstructured text is added via a popup dialog. Optionally, the document cre-
ation time can be specified below the input field.

(c) A timeline immediately after importing text, with many vague and uncurated
dates. General timeline information can be modified when no event is selected.

(d) Event dates, title, and description can be adjusted when an event is selected,
it can also be assigned to another track, enriched with images, or deleted.

(e) The curated timeline can be exported; the presentation view is a read-only
version of the editing interface.

(f) The curated timeline can also be exported using the open-source tool Time-
lineJS [43].

Fig. 5: A walkthrough of the TimeLineCurator curation process. We demonstrate this process using unstructured document text from the “The Fall”
section of the Wikipedia article on the Berlin Wall [68]. The resulting timeline can be accessed at http://goo.gl/SU1faP.

many dates assigned to “today” despite only containing dates from
the distant past. Another source of false positives are temporal ex-
pressions that are used as names and do not refer to a specific event,
such as Taylor Swift’s album title “1989” or the TV Show “Last Week
Tonight”.

Events that were missed by the automatic extraction were often
those which referred to another event, such as “six days after the site
launched” or possessive statements, such as “last week’s vote”. In
some cases these were extracted as vague dates, and in others they
were missed completely. Currently, the year recognition is limited
to Anno Domini years with four digits; references such as “13,000-
12,000 BC” are not handled.

This benchmark was conducted by one of the authors who was very
familiar with the system. We chose this approach because this bench-
mark scenario required a meticulous comparison between automatic
and manual extraction that does not occur during the actual timeline
authoring process. Moreover, this benchmark scenario focused solely
on the verification and correction of event dates and did not involve
any editorial judgment, such as deciding which events to include in the
timeline and how to embellish these dates with interesting event titles
and descriptions. However, we conjecture that the complete curation
process with TimeLineCurator is easier and preferable to the tedious
manual structured creation approach. To address this conjecture, we
conducted a second benchmark with a more realistic approximation of
the authoring process and an arms-length group of participants.

6.2 User Experience Comparison
The second form of evaluation involved the observation of behaviour
that more closely approximates a real timeline authoring process. We
recruited six arms-length participants from our department who were
unaffiliated with the project and asked them to create coherent time-
lines. We provided them with short text articles and asked them to
make editorial judgements about each event they encountered; they
were also asked to curate event titles. Each author curated two time-
lines: first, one using manual structured data entry as required by
TimeLineJS [43] and second, one using TimeLineCurator. They were
directed to curate the timeline until they were fully satisfied and felt
that it was ready to be exported. All participants strongly preferred
TimeLineCurator’s visual authoring environment to the structured data
entry required by TimelineJS, and they found working with Time-
LineCurator to be highly engaging. Every user encountered at least
some difficulties with the structured editing approach despite having
a strong technical background. One participant even abandoned the
structured editing approach completely after a few minutes because it
was so tedious. The curation time from start to finish across partici-
pants is not directly comparable because the the scope of the editorial
judgment performed during the curation process varied considerably
between them. This informal comparison of user experience provided
encouraging qualitative evidence that the design goals of our authoring
system were met.

6.3 Speculative Browsing
The ability to quickly rule out unsuitable documents using Time-
LineCurator is a major strength of the system. Figure 7 shows three
examples of timelines where the author was able to quickly decide that
the document is not a suitable source for an engaging timeline. This
decision was made in under 15 seconds in all of these cases, with most
of that time devoted to copying, pasting, and waiting for extraction;
once the timeline is visible, the decision is essentially immediate.

6.4 Curated Examples
We generated and curated many timelines during the course of this
project, including the Berlin Wall timeline documented in Figure 5 and
the timeline of W. A. Mozart’s biography shown in Figure 8. We also
created a gallery of curated timelines6, exported with both TimelineJS
and with TimeLineCurator’s presentation view.

6http://cs.ubc.ca/group/infovis/software/
TimeLineCurator/#examples

Fig. 7: Timelines extracted from two news articles [52, 72] and a report
from a science press release site [46]. All three do not contain much
temporal information and thus can quickly be ruled out as a suitable
basis for an interesting timeline.

6.5 Use Cases
In addition to evaluation conducted in our lab where we the usage sce-
nario was specified a priori, we also gathered feedback based on real
use cases from current and prospective timeline authors from several
user communities including journalism.
Solicited potential users: We conducted semi-structured interviews
with eight people: seven journalists and one policy researcher. Four of
these individuals already had experience creating interactive timelines
and provided us with feedback about the strengths and limitations of
currently available timeline tools. Two of these individuals had pre-
existing plans to use a timeline authoring tool in an upcoming project.

When we presented TimeLineCurator to these individuals and
asked them to try it out, their reaction was very positive and they re-
marked that it was very easy to use. They enjoyed the approach of
extracting temporal event data from unstructured document text, and
that they no longer had to start start with an empty spreadsheet and
add every event manually one at a time. The immediate visual feed-
back during the authoring process was also highly appreciated.

One journalist said: “For the less geeky journalists who might be
scared of timelines, this is a brilliant super-easy way to see what it
might look like” and that TimeLineCurator might be a good way to
“break the barrier between the artiste writer and the data journalist”.

We asked these individuals to speculate about possible kinds of sto-
ries that might benefit from accompanying timelines: these included
the unfolding of political scandals, how amendment bills proceed in
government, and biographies. They also proposed several use cases
that we had not previously considered, such as using TimeLineCurator
for data analysis rather than timeline authoring for presentation. One
idea involved using TimeLineCurator with court documents when re-
porting on a trial to better understand the context of a criminal or legal
case. Another possible use case is fact-checking during investigative
analysis. Typically, details are verified through two reliable sources
before publication. A journalist that we spoke to imagined that Time-
LineCurator might accelerate fact-checking for temporal events and
finding mismatches between sources. Finally, a third use case involved
using TimeLineCurator to prepare for interviews, to quickly catch up
the subject’s biography or background.
Unsolicited current users: In contrast to the ideas above that are po-
tential use cases for prospective users of TimeLineCurator, we can also
report on use cases from people in different communities who already
used TimeLineCurator for their own projects after it was deployed and
publicized. One author was a digital humanities researcher who cre-
ated a timeline to see the historical development of deaf churches in

Fig. 8: A timeline of composer W. A. Mozart’s biography [71], both before and after curation. The resulting timeline can be accessed at http:
//goo.gl/2JikND.

England. Another author was a user experience professional who cre-
ated a timeline to accompany the profile of his company.

7 DISCUSSION & FUTURE WORK

TimeLineCurator offers a new way of exploring the temporal struc-
ture of a document in order to make the process of creating timelines
enjoyable rather than arduous. We designed the system under the as-
sumption that entity extraction through natural language processing
is decent but not perfect, and can serve to support human-in-the-loop
curation. Moreover, even if the extraction were perfect and all date
events and spans were extracted correctly, there are still many subtasks
involved in timeline curation that will need nuanced human judgement
for quite some time. In addition to the core question of selecting which
events are interesting to tell a particular story, there are many editorial
choices in writing the title and description text that accompanies the
event. Deciding whether to add media and finding relevant imagery is
also a very nuanced question that benefits from human judgement, at
least in the near future. Although we originally designed it to help au-
thors create presentations, it may well serve for analysis tasks such as
fact-checking, which also involves the exercise of human judgement.

The vast majority of feedback we received from interviews and
from the broader community approved the general idea of Time-
LineCurator. Many requests for improvement pertained to the auto-
mated event extraction. Our design goal was to use existing tools that
known to be imperfect, but it would be both useful and straightfor-
ward to incorporate newer tools such as context-dependent semantics
as toolkits become more widely available [33]. Also, moving to a
natural language processing toolkit that supports multiple languages
would allow the use of TimeLineCurator outside of English-speaking
countries.

Integrating TimeLineCurator into Overview [5], an open-source
system for investigative journalism that supports the analysis of large
collections of documents, would open up further use cases for both
analysis and presentation. Overview integration would also provide
DocumentCloud [13] support for accessing online document reposito-
ries, for further utility to the journalism community.

8 CONCLUSION

We presented TimeLineCurator, a visual timeline authoring system
that recognizes temporal expressions within unstructured document
text. It accelerates the event-extraction process and fulfills two broader
tasks. First, it enables authors to create polished timelines from in-
teresting documents within only a few minutes. Second, it enables
speculative browsing, which lets authors eliminate temporally unin-
teresting documents from consideration within seconds. TimeLineCu-
rator can be used by a broad community of authors including those
without a strong technical background, because it is easily accessi-
ble, has a simple user interface, and does not requiring any program-
ming. It lowers the access barrier for timeline creation for a broad
set of potential authors, including journalists, who would like to work
visually rather than via manual data entry into spreadsheets. Time-
LineCurator can directly create two forms of curated timeline: the
popular TimelineJS [43] and our own presentation format that pro-
vides an information-dense overview. Moreover, the resulting set of
curated events can be exported as a structured dataset, opening up fur-
ther possibilities beyond these two currently-supported presentation
formats. Interviews and community feedback provided evidence that
the TimeLineCurator approach of scaffolded curation built on top of

imperfect automatic entity extraction provides useful and appealing
functionality in several application domains.

ACKNOWLEDGMENTS

We thank the journalists and students who provided feedback. Thanks
to Francisco (Pax) Escalona for development assistance. Thanks to
Chad Skelton and Nick Diakopoulos for publicizing TimeLineCurator
within the journalism community. We also thank Michelle Borkin,
Anamaria Crişan, Enamul Hoque, Sung-Hee Kim, and Narges Mahyar
for their feedback on the paper.

REFERENCES

[1] E. Alexander, J. Kohlmann, R. Valenza, M. Witmore, and M. Gleicher.
Serendip: Topic model-driven visual exploration of text corpora. In Proc.
IEEE Conf. Visual Analytics Science and Technology (VAST), pages 173–
182, 2014.

[2] Y. Artzi and L. Zettlemoyer. Weakly supervised learning of semantic
parsers for mapping instructions to actions. Trans. Assoc. Computational
Linguistics, 1:49–62, 2013.

[3] Balance Media and WNYC / J. Keefe. Vertical Timeline.
http://github.com/jkeefe/Timeline.

[4] M. Bostock, V. Ogievetsky, and J. Heer. D3: Data-driven docu-
ments. IEEE Trans. Visualization and Computer Graphics (Proc. Info-
Vis), 17(12):2301–2309, 2011.

[5] M. Brehmer, S. Ingram, J. Stray, and T. Munzner. Overview: The design,
adoption, and analysis of a visual document mining tool for investigative
journalists. IEEE Trans. Visualization and Computer Graphics (Proc.
InfoVis), 20(12):2271–2280, 2014.

[6] M. Brehmer and T. Munzner. A multi-level typology of abstract visual-
ization tasks. IEEE Trans. Visualization and Computer Graphics (Proc.
InfoVis), 19(12):2376–2385, 2013.

[7] J. Chae, D. Thom, H. Bosch, Y. Jang, R. Maciejewski, D. S. Ebert, and
T. Ertl. Spatiotemporal social media analytics for abnormal event detec-
tion and examination using seasonal-trend decomposition. In Proc. IEEE
Conf. Visual Analytics Science and Technology (VAST), pages 143–152,
2012.

[8] A. X. Chang and C. D. Manning. SUTime: A library for recognizing and
normalizing time expressions. In Proc. Intl. Conf. Language Resources
and Evaluation (LREC), pages 3735–3740, 2012.

[9] H. Chen, H. Atabakhsh, C. Tseng, B. Marshall, S. Kaza, S. Eggers,
H. Gowda, A. Shah, T. Petersen, and C. Violette. Visualization in law
enforcement. Proc. Extended Abstracts ACM SIGCHI Conf. Human Fac-
tors in Computing Systems (CHI), pages 1268–1271, 2005.

[10] J. DelViscio and D. Overbye. The Higgs, from theory to reality. The New
York Times, Mar. 4, 2013. http://goo.gl/Y8MaKC.

[11] N. Diakopoulos. From words to pictures: Text analysis and visualization,
Mar. 5 2015. Presentation at NICAR 2015: http://t.co/kfqbTBzjI6.

[12] Dipity. http://dipity.com/.
[13] DocumentCloud. http://documentcloud.org/.
[14] W. Dou, X. Wang, R. Chang, and W. Ribarsky. ParallelTopics: A proba-

bilistic approach to exploring document collections. In Proc. IEEE Conf.
Visual Analytics Science and Technology (VAST), pages 231–240, 2011.

[15] W. Dou, X. Wang, D. Skau, W. Ribarsky, and M. X. Zhou. LeadLine:
Interactive visual analysis of text data through event identification and
exploration. In Proc. IEEE Conf. Visual Analytics Science and Technol-
ogy (VAST), pages 93–102, 2012.

[16] W. Dou, L. Yu, X. Wang, Z. Ma, and W. Ribarsky. HierarchicalTopics:
Visually exploring large text collections using topic hierarchies. IEEE
Trans. Visualization and Computer Graphics (Proc. VAST), 19(12):2002–
2011, 2013.

[17] J. A. Ferstay, C. B. Nielsen, and T. Munzner. Variant View: Visualizing
sequence variants in their gene context. Trans. IEEE Visualization and
Computer Graphics (Proc. InfoVis), 19(12):2546–2555, 2013.

[18] Flask Microframework for Python. http://flask.pocoo.org/.
[19] M. Gidda. Edward Snowden and the NSA files – timeline. The Gaurdian,

Aug. 21, 2013. http://goo.gl/hdj2PY.
[20] Google, Inc. AngularJS. https://angularjs.org/.
[21] Google News Timeline. http://news.google.com/.
[22] C. Görg, Z. Liu, J. Kihm, J. Choo, H. Park, and J. T. Stasko. Com-

bining computational analyses and interactive visualization for document
exploration and sensemaking in Jigsaw. IEEE Trans. Visaulization and
Computer Graphics (TVCG), 19(10):1646–1663, 2013.

[23] C. Görg, Z. Liu, and J. Stasko. Reflections on the evolution of the Jigsaw
visual analytics system. Information Visualization, 13:336–345, 2014.

[24] L. Groeger. Making timelines, Mar. 2015. Blog post:
http://goo.gl/AIfGCu.

[25] M. Harrower and C. A. Brewer. Colorbrewer.org: An online tool for
selecting colour schemes for maps. Cartographic Journal, 40(1):27–37,
2003.

[26] S. Havre, E. Hetzler, P. Whitney, and L. Nowell. ThemeRiver: Visualiz-
ing thematic changes in large document collections. IEEE Trans. Visual-
ization and Computer Graphics (TVCG), 8(1):9–20, 2002.

[27] Heroku Cloud Application Platform. http://heroku.com/.
[28] Hoppinger BV. TimeRime. http://timerime.com/.
[29] D. F. Huynh. SIMILE Widgets: Timeline. http://simile-

widgets.org/timeline/.
[30] Y. A. Kang and J. T. Stasko. Examining the use of a visual analytics

system for sensemaking tasks: Case studies with domain experts. IEEE
Trans. Visualization and Computer Graphics (Proc. VAST), 18(12):2869–
2878, 2012.

[31] T. Kwiatkowski, E. Choi, Y. Artzi, and L. Zettlemoyer. Scaling seman-
tic parsers with on-the-fly ontology matching. In Proc. Conf. Empirical
Methods in Natural Language Processing (EMNLP), pages 1545–1556,
2013.

[32] B. C. Kwon, F. Stoffel, D. Jäckle, B. Lee, and D. A. Keim. VisJockey:
Enriching data stories through orchestrated visualization. In Proc. Com-
putation + Journalism Posters, 2014.

[33] K. Lee, Y. Artzi, J. Dodge, and L. Zettlemoyer. Context-dependent se-
mantic parsing for time expressions. In Proc. Conf. Assoc. Computational
Linguistics (ACL), pages 1437–1447, 2014.

[34] Y. Liu, S. Barlowe, Y. Feng, J. Yang, and M. Jiang. Evaluating ex-
ploratory visualization systems: A user study on how clustering-based
visualization systems support information seeking from large document
collections. Information Visualization, 12(1):25–43, 2013.

[35] D. Luo, J. Yang, M. Krstajic, W. Ribarsky, and D. Keim. EventRiver:
Visually exploring text collections with temporal references. IEEE Trans.
Visualization and Computer Graphics (TVCG), 18(1):93–105, 2012.

[36] S. Machlis. Tools & tutorials from NICAR15, Mar. 2015. Blog post:
http://goo.gl/JHVOvJ.

[37] I. Mani and G. Wilson. Robust temporal processing of news. In Proc.
Conf. Assoc. Computational Linguistics (ACL), pages 69–76, 2000.

[38] G. A. Manne. Opinion: The FCC’s net neutrality victory is anything but.
Wired, Mar. 3, 2015. http://goo.gl/wFSOJf.

[39] M. Martinez. Timeline: Leads in the hunt for Malaysia Airlines Flight
370 weave drama. CNN U.S. Edition, Apr. 7, 2014. http://goo.gl/XJcQBu.

[40] Mnemograph LLC. Timeglider. http://timeglider.com/.
[41] R. Munroe. xkcd: Movie narrative charts. http://xkcd.com/657/.
[42] R. Munroe. Lecture at “See, Think, Design, Produce”, Aug 7. 2014.

Seattle, WA.
[43] Northwestern University Knight Lab. TimelineJS.

http://timeline.knightlab.com/.
[44] C. Northwood. TERNIP: Temporal Expression Recognition and Normal-

isation in Python, 2010. https://github.com/cnorthwood/ternip.
[45] S. Nunes. WikiChanges, 2008. http://sergionunes.com/p/wikichanges/.
[46] Phys.org. Mathematicians solve 60-year-old problem, Mar. 23, 2015.

http://goo.gl/jKRwM0.
[47] C. Plaisant, B. Milash, A. Rose, S. Widoff, and B. Shneiderman. Life-

Lines: Visualizing personal histories. In Proc. ACM SIGCHI Conf. Hu-
man Factors in Computing Systems (CHI), pages 221–227, 1996.

[48] ProPublica. TimelineSetter. http://propublica.github.io/timeline-setter/.
[49] J. Pustejovsky, J. M. Castano, R. Ingria, R. Sauri, R. J. Gaizauskas,

A. Setzer, and G. Katz. TimeML: Robust specification of event and tem-
poral expressions in text. In Fifth Intl. Wkshp. Computational Semantics

(IWCS), 2003.
[50] D. Ren, T. Hollerer, and X. Yuan. iVisDesigner: Expressive interactive

design of information visualizations. IEEE Trans. Visualization and Com-
puter Graphics (Proc. InfoVis), 20(12):2092–2101, 2014.

[51] S. Rogers. Hey wonk reporters, liberate your data! Mother Jones, Apr.
24, 2014. http://goo.gl/cbhgtk.

[52] C. Rumaitis del Rio and A. Brown. How dealing with climate
change is like playing cricket. The Guardian, Mar. 23, 2015.
http://goo.gl/YLkmSx.

[53] D. Rushe. Net neutrality activists score landmark victory in fight to gov-
ern the internet. The Guardian, Feb. 26, 2015. http://goo.gl/9cD2V2.

[54] A. Satyanarayan and J. Heer. Authoring narrative visualizations with
Ellipsis. Computer Graphics Forum (Proc. EuroVis), 33(3), 2014.

[55] A. Satyanarayan and J. Heer. Lyra: An interactive visualization design
environment. Computer Graphics Forum (Proc. EuroVis), 33(3), 2014.

[56] M. Sedlmair, M. Meyer, and T. Munzner. Design study methodology:
Reflections from the trenches and the stacks. IEEE Trans. Visualization
and Computer Graphics (Proc. InfoVis), 18(12):2431–2440, 2012.

[57] J. Stasko, C. Görg, and R. Spence. Jigsaw: Supporting investigative
analysis through interactive visualization. Information Visualization,
7(2):118–132, 2008.

[58] J. Strötgen and M. Gertz. Multilingual and cross-domain temporal tag-
ging. Language Resources and Evaluation, 47(2):269–298, 2013.

[59] Tableau. http://tableau.com.
[60] Y. Tanahashi and K.-L. Ma. Design considerations for optimizing sto-

ryline visualizations. IEEE Trans. Visualization and Computer Graphics
(Proc. InfoVis), 18(12):2679–2688, 2012.

[61] Timeline for iOS, web. https://timeline.com/.
[62] R. Vadlapudi, M. Siahbani, A. Sarkar, and J. Dill. LensingWikipedia:

Parsing text for the interactive visualization of human history. In Proc.
IEEE Conf. Visual Analytics Science and Technology (VAST) Poster Com-
pendium, pages 247–248, 2012.

[63] M. Verhagen, R. Knippen, I. Mani, and J. Pustejovsky. Annotation of
temporal relations with Tango. In Proc. Intl. Conf. Language Resources
and Evaluation (LREC), 2006.

[64] M. Verhagen, I. Mani, R. Sauri, R. Knippen, S. B. Jang, J. Littman,
A. Rumshisky, J. Phillips, and J. Pustejovsky. Automating temporal an-
notation with TARSQI. In Conf. Assoc. Computational Linguistics Poster
Proceedings, pages 81–84, 2005.

[65] B. Victor. Drawing dynamic visualizations, Feb. 2013. Lecture at Stan-
ford University. http://vimeo.com/66085662.

[66] F. Viégas, M. Wattenberg, F. van Ham, J. Kriss, and M. McKeon.
ManyEyes: A site for visualization at internet scale. IEEE Trans. Vi-
sualization and Computer Graphics (TVCG), 13(6):1121–1128, 2007.

[67] Webalon. Tiki-Toki. http://tiki-toki.com/.
[68] Wikipedia. Berlin Wall. http://goo.gl/GtHKW7.
[69] Wikipedia. Facebook: History. http://goo.gl/aKRKvr.
[70] Wikipedia. Sam Smith (singer). http://goo.gl/dF4Gzm.
[71] Wikipedia. Wolfgang Amadeus Mozart. http://goo.gl/BEKzXw.
[72] J. Wolfers. Fewer women run big companies than men named John. The

New York Times, Mar. 2, 2015. http://goo.gl/W8qrtT.
[73] C. Wu. NICAR 2015 slides, links & tutorials, Mar. 2015. Blog post:

http://goo.gl/MFbXXF.
[74] R. Yan, X. Wan, J. Otterbacher, L. Kong, X. Li, and Y. Zhang. Evolu-

tionary timeline summarization: A balanced optimization framework via
iterative substitution. In Proc. ACM SIGIR Conf. Information Retrieval,
pages 745–754, 2011.

[75] J. Zhao, S. M. Drucker, D. Fisher, and D. Brinkman. TimeSlice: Inter-
active faceted browsing of timeline data. In Proc. ACM Conf. Advanced
Visual Interfaces (AVI), pages 433–436, 2012.

	Introduction
	Computational methods in the news
	Motivation: Enhancing accessibility
	Method: Combining NLP and InfoVis
	Contribution: TimeLineCurator & Authoring Model
	Outline

	The big picture of timelines
	Transmission of Time
	Sense of time to Language
	Language to Data

	Visualizing Time
	Time as quantitative value
	Marching along the line
	Historical excursion

	Use cases
	Edgy examples
	Scientific examples
	Interactive general purpose examples

	Timelines in journalism
	Shiny examples
	Benefits
	Missed opportunities

	Creating Timelines
	Common approaches
	Manual drawing
	Structured creation

	Challenges
	New approach
	Timeline Authoring Model

	Related Work
	Visualization Authoring Tools
	Timeline Visualizations from Structured Event Data
	Extracting Time Expressions from Unstructured Text
	Visualizations from Unstructured Text

	TimeLineCurator
	Identifying TimeLineJS Limitations
	Requirements & Goals
	Design Process
	Necessary elements
	Design Iterations
	Implementation

	Architecture
	Interface & Design Rationale
	Timeline View
	List View
	Document View
	Control Panel
	View Coordination and Navigation
	Presentation and Export
	Exemplary walkthrough

	Analysis
	Extraction Error Benchmark
	User Experience Comparison
	Speculative Browsing
	Curated Examples
	Use Cases
	Solicited potential users
	Unsolicited current users

	Discussion & Future Work
	Discussion
	Future Work

	Conclusion
	Appendices
	Contents of the CD
	VAST Paper

