Assignment 6
• find dataset, visualize it, and write story about it
 • you’ve now had practice in
 • effective visual encoding: space, color
 • finding the story within a dataset
 • wrangling
 • linking up and partitioning into multiple views
 • you’re encouraged to consult with us if you get stuck!
 • is your idea viable/newsworthy?
 • how can you do what you want inside Tableau?
 • is your visual encoding well justified?
 • you’re encouraged to post story publicly (but not required)
 • note you can embed visuals within web page with Tableau Public

Last Time

Stories

Idiom: force-directed placement
• visual encoding
 • link connection marks, node points marks
• considerations
 • spatial position meaning directly encoded
 • left box is smaller coverage
 • proximity semantics
 • sometimes meaningful
 • sometimes arbitrary, artifact of layout algorithm
 • ravens with breathing
 • visual encoding
 • cell shows presence/absence of edge
• tasks
 • explore topology: locates paths, clusters
• scalability
 • node/edge density E = 4N

Idiom: adjacency matrix view
• data/network
 • transform into data/encoding as heatmap
• derived data: table from network
 • 1 quadrant attri.
 • weighted edge between nodes
 • 2 using strikes node box x 2
• visual encoding
 • cell shows presence/absence of edge
 • 1K nodes, 1M edges

Connection vs. adjacency comparison
• adjacency matrix strengths
 • scalability, supports recording
 • some topology tasks trainable
• node-link diagram strengths
 • topology understanding, path tracing
 • intuitive, no training needed
• empirical study
 • node-link best for small networks
• matrix best for large networks

Idiom: radial node-link tree
• data
 • tree
• encoding
 • link connection marks
 • point node marks
 • radial axes orientation
 • angular proximity: radius
 • distance from center: depth in tree
• tasks
 • understanding topology, following paths
• scalability
 • 1K – 10K nodes

Networks

Connection

http://www.cs.ubc.ca/~tmm/courses/journ16
Week 6: Networks, Stories, Vis in the Newsroom
Tamara Munzner
Department of Computer Science
University of British Columbia
JRNL 520H, Special Topics in Contemporary Journalism: Data Visualization
Week 6: 18 October 2016

Assignment 6
• find dataset, visualize it, and write story about it
 • you’ve now had practice in
 • effective visual encoding: space, color
 • finding the story within a dataset
 • wrangling
 • linking up and partitioning into multiple views
 • you’re encouraged to consult with us if you get stuck!
 • is your idea viable/newsworthy?
 • how can you do what you want inside Tableau?
 • is your visual encoding well justified?
 • you’re encouraged to post story publicly (but not required)
 • note you can embed visuals within web page with Tableau Public

Last Time: Rules of Thumb
• No unjustified 3D
• Resolution over immersion
• Overview first, zoom and filter, details on demand
• Responsiveness is required
• Function first, form next

Demos 1 & 2: Wrangling Tutorial, Simple Survey
• Credit: Caitlin Havlak
 • Wrangling Lessons
 • first row for headers (right menu over source in)
 • Tableau data inspector
 • manual Excel/GoogleDoc cleaning
 • Big Ideas
 • reshaping data: from wide to tall
 • join: inner, left, right, outer
 • pivot: one observation per row, no cross-tabulation

Arrange networks and trees

Schedule
• today: office hours 2:30-3:30pm, Tamara & Caitlin
 • next week:
 • Tamara on travel Sat Oct 22 - Sat Oct 29
 • in VIS conference in Baltimore, likely extremely slow with email
 • Caitlin here
 • Tue Oct 25 9:30-12:30, 1:00-4:30 in Seg Tsal big lab room 313, drop by for help/interaction
 • available by email throughout the week
 • two weeks:
 • project 6 due Tue Nov 1 9am

Today
• stories
• networks
• (break)
• vis in the news
• beyond this class
• individual meetings on final project
Idiom: treemap

• data
 – tree
 – 1 quant attrib at leaf nodes
• encoding
 – area containment marks for hierarchical structure
 – rectilinear orientation
 – size encodes quant attrib
• tasks
 – query attribute at leaf nodes
• scalability
 – 1M leaf nodes

Link marks: Connection and containment

• marks as links (vs. nodes)
 – common case in network drawing
 – 1D case: connection
 • ex: all node-link diagrams
 • emphasizes topology/path tracing
 • networks and trees
 – 2D case: containment
 • ex: all treemap variants
 • emphasizes attribute values at leaves (size coding)
 • only trees

Tree drawing idioms comparison

• data shown
 – link relationships
 – tree depth
 – sibling order
• design choices
 – connection vs containment link marks
 – rectilinear vs radial layout
 – spatial position channels
• considerations
 – redundant/arbiterary?
 – information density?
 – avoid wasting space
