Week 4: Manipulate, Facet, Reduce

Tamara Munzner
Department of Computer Science
University of British Columbia

JRNL 520H, Special Topics in Contemporary Journalism: Data Visualization
Week 4: 4 October 2016

http://www.cs.ubc.ca/~tmm/courses/journ16
Whereabouts

• Caitlin on travel this week and next week
 – don’t expect email answers until she returns; email Tamara instead!

• Tamara on travel Thu Oct 6 - Mon Oct 10
 – in Portland Fri/Sat to give another keynote, will still be answering email
 – short office hours in Sing Tao next week: 12:30-1:30pm
News

• Assign 2 marks not out yet
 – stay tuned, just got back from Stanford late last night
• Today’s format
 – interleave foundations & demos
 • Tamara will walk through Tableau demos
 • you follow along step by step on your own laptop
 • Tamara will take breaks to rove the room to help out folks who get stuck
Last Time
Demo 1: Stone Color Workbook

• Credit: Maureen Stone, Tableau Research
 – designer of Tableau color defaults, author of *A Field Guide to Digital Color*
 – workbook from Tableau Customer Conference 2014 talk
 Seriously Colorful: Advanced Color Principles & Practices

• Tableau Lessons
 – more visual encoding practice
 – color palettes, univariate & bivariate
 – discrete (categorical) vs continuous (quantitative)

• Big Ideas
 – Tableau has many built-in features to get color right, but care still needed
Demo 2: Intro to Maps

• Tableau Lessons
 – handling spatial data
 – multiple data sources
 – paths on maps
 – more on handling missing data: filtering

• Big Ideas
 – integrating visual encoding design choices with given spatial data
How?

Encode

- Arrange
 - Express
 - Separate
- Order
 - Align
- Use

Map
- from categorical and ordered attributes
- Color
 - Hue
- Saturation
- Luminance
- Size, Angle, Curvature, ...
- Shape
- Motion
 - Direction, Rate, Frequency, ...

Manipulate

- Change
- Select
- Navigate

Facet

- Juxtapose
- Partition
- Superimpose

Reduce

- Filter
- Aggregate
- Embed

What?

Why?

How?
How to handle complexity: 1 previous strategy + 3 more

- Derive new data to show within view
- Change view over time
- Facet across multiple views
- Reduce items/attributes within single view

Derive

Manipulate

- Change

Facet

- Juxtapose

Reduce

- Filter

Select

- Partition

Navigate

- Superimpose

Embed

- Aggregate
Manipulate

- **Change over Time**
- **Navigate**
 - Item Reduction
 - Zoom
 - Geometric or Semantic
 - Pan/Translate
 - Constrained
 - Attribute Reduction
 - Slice
 - Cut
 - Project

- **Select**
Change over time

• change any of the other choices
 – encoding itself
 – parameters
 – arrange: rearrange, reorder
 – aggregation level, what is filtered...
 – interaction entails change
Idiom: **Re-encode**
System: **Tableau**

made using Tableau, http://tableausoftware.com
Idiom: **Reorder**

- **data**: tables with many attributes
- **task**: compare rankings

System: **LineUp**

Idiom: **Realign**

- stacked bars
 - easy to compare
 - first segment
 - total bar
- align to different segment
 - supports flexible comparison

System: LineUp

Idiom: Animated transitions

• smooth transition from one state to another
 – alternative to jump cuts
 – support for item tracking when amount of change is limited

• example: multilevel matrix views

• example: animated transitions in statistical data graphics
 – https://vimeo.com/19278444

Select and highlight

- selection: basic operation for most interaction
- design choices
 - how many selection types?
 - click vs hover: heavyweight, lightweight
 - primary vs secondary: semantics (eg source/target)
- highlight: change visual encoding for selection targets
 - color
 - limitation: existing color coding hidden
 - other channels (eg motion)
 - add explicit connection marks between items
Navigate: Changing item visibility

- change viewpoint
 - changes which items are visible within view
 - camera metaphor
 - zoom
 - geometric zoom: familiar semantics
 - semantic zoom: adapt object representation based on available pixels
 » dramatic change, or more subtle one
 - pan/translate
 - rotate
 - especially in 3D
 - constrained navigation
 - often with animated transitions
 - often based on selection set
Idiom: **Semantic zooming**

- visual encoding change
 - colored box
 - sparkline
 - simple line chart
 - full chart: axes and tickmarks

System: LiveRAC

Navigate: Reducing attributes

• continuation of camera metaphor
 – slice
 • show only items matching specific value for given attribute: slicing plane
 • axis aligned, or arbitrary alignment
 – cut
 • show only items on far slide of plane from camera
 – project
 • change mathematics of image creation
 – orthographic
 – perspective
 – many others: Mercator, cabinet, ...

Previous Demos

• Tableau Lessons
 – changing visual encoding
 – changing ordering (sorting)
 – navigation
 • zoom/translate in maps
How?

Encode

<table>
<thead>
<tr>
<th>Arrange</th>
<th>Order</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Express</td>
<td>Separate</td>
<td>Align</td>
</tr>
</tbody>
</table>

Manipulate

<table>
<thead>
<tr>
<th>Change</th>
<th>Juxtapose</th>
</tr>
</thead>
</table>

Facet

<table>
<thead>
<tr>
<th>Select</th>
<th>Partition</th>
<th>Superimpose</th>
</tr>
</thead>
</table>

Reduce

<table>
<thead>
<tr>
<th>Filter</th>
<th>Aggregate</th>
<th>Embed</th>
</tr>
</thead>
</table>

What?

- Map from categorical and ordered attributes:
 - Color
 - Hue
 - Saturation
 - Luminance
 - Size, Angle, Curvature, ...
- Shape:
 - + • ■ ▲
- Motion:
 - Direction, Rate, Frequency, ...

Why?

How?

- Map
- Change
- Select
- Superimpose
Facet

- Juxtapose

- Partition

- Superimpose
Juxtapose and coordinate views

- Share Encoding: Same/Different
 - Linked Highlighting

- Share Data: All/Subset/None

- Share Navigation
Idiom: Linked highlighting

- see how regions contiguous in one view are distributed within another
 - powerful and pervasive interaction idiom

- encoding: different
 - *multiform*

- data: all shared

Demo 1: Seattle Construction

- Credit: Ben Jones

- Tableau Lessons
 - linking views with actions: highlight on hover
 - global filtering

- Big Ideas
 - linking views possible but somewhat clunky in Tableau
Idiom: bird’s-eye maps

- encoding: same
- data: subset shared
- navigation: shared
 - bidirectional linking

- differences
 - viewpoint
 - (size)

- overview-detail

Idiom: Small multiples

- encoding: same
- data: none shared
 - different attributes for node colors
 - (same network layout)
- navigation: shared

System: Cerebral

Coordinate views: Design choice interaction

<table>
<thead>
<tr>
<th>Encoding</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Same</td>
<td>All</td>
</tr>
<tr>
<td></td>
<td>Reapundant</td>
</tr>
<tr>
<td></td>
<td>Subset</td>
</tr>
<tr>
<td></td>
<td>Overview/Detail</td>
</tr>
<tr>
<td></td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Small Multiples</td>
</tr>
<tr>
<td>Different</td>
<td>All</td>
</tr>
<tr>
<td></td>
<td>Multiform</td>
</tr>
<tr>
<td></td>
<td>Subset</td>
</tr>
<tr>
<td></td>
<td>Multiform, Overview/Detail</td>
</tr>
<tr>
<td></td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>No Linkage</td>
</tr>
</tbody>
</table>

- **why juxtapose views?**
 - **benefits: eyes vs memory**
 - lower cognitive load to move eyes between 2 views than remembering previous state with single changing view
 - **costs: display area, 2 views side by side each have only half the area of one view**
Why not animation?

• disparate frames and regions: comparison difficult
 – vs contiguous frames
 – vs small region
 – vs coherent motion of group

• safe special case
 – animated transitions
System: **Improvise**

- investigate power of multiple views
 - pushing limits on view count, interaction complexity
 - how many is ok?
 - open research question
- reorderable lists
 - easy lookup
 - useful when linked to other encodings

Partition into views

• how to divide data between views
 – split into regions by attributes
 – encodes association between items using spatial proximity
 – order of splits has major implications for what patterns are visible

• no strict dividing line
 – view: big/detailed
 • contiguous region in which visually encoded data is shown on the display
 – glyph: small/iconic
 • object with internal structure that arises from multiple marks
Partitioning: List alignment

- single bar chart with grouped bars
 - split by state into regions
 - complex glyph within each region showing all ages
 - compare: easy within state, hard across ages

- small-multiple bar charts
 - split by age into regions
 - one chart per region
 - compare: easy within age, harder across states
Partitioning: Recursive subdivision

- split by neighborhood
- then by type
- then time
 - years as rows
 - months as columns
- color by price

- neighborhood patterns
 - where it’s expensive
 - where you pay much more for detached type

Partitioning: Recursive subdivision

- switch order of splits
 - type then neighborhood
- switch color
 - by price variation
- type patterns
 - within specific type, which neighborhoods inconsistent

System: HIVE

Partitioning: Recursive subdivision

- different encoding for second-level regions
 - choropleth maps

System: HIVE

Partitioning: Recursive subdivision

- size regions by sale counts
 - not uniformly
- result: treemap

Previous Demos

• Tableau Lessons
 – partitioning: drag multiple pills into Row or Column
 – disaggregation: drag field into Detail/Color
 • aggregation is automatic and aggressive in Tableau
Superimpose layers

• **layer**: set of objects spread out over region
 – each set is visually distinguishable group
 – extent: whole view

• design choices
 – how many layers, how to distinguish?
 • encode with different, nonoverlapping channels
 • two layers achievable, three with careful design
 – small static set, or dynamic from many possible?
Static visual layering

• foreground layer: roads
 – hue, size distinguishing main from minor
 – high luminance contrast from background

• background layer: regions
 – desaturated colors for water, parks, land areas

• user can selectively focus attention
• “get it right in black and white”
 – check luminance contrast with greyscale view

Superimposing limits

• few layers, but many lines
 – up to a few dozen
 – but not hundreds

• superimpose vs juxtapose: empirical study
 – superimposed for local, multiple for global
 – tasks
 • local: maximum, global: slope, discrimination
 – same screen space for all multiples vs single superimposed

Dynamic visual layering

• interactive, from selection
 – lightweight: click
 – very lightweight: hover

• ex: 1-hop neighbors

Reduce items and attributes

• reduce/increase: inverses

• filter
 – pro: straightforward and intuitive
 • to understand and compute
 – con: out of sight, out of mind

• aggregation
 – pro: inform about whole set
 – con: difficult to avoid losing signal

• not mutually exclusive
 – combine filter, aggregate
 – combine reduce, change, facet
Idiom: **dynamic filtering**

- item filtering
- browse through tightly coupled interaction
 — alternative to queries that might return far too many or too few

System: FilmFinder

Idiom: **DOSFA**

- attribute filtering
- encoding: star glyphs

Idiom: **histogram**

- static item aggregation
- task: find distribution
- data: table
- derived data
 - new table: keys are bins, values are counts
- bin size crucial
 - pattern can change dramatically depending on discretization
 - opportunity for interaction: control bin size on the fly
Continuous scatterplot

- static item aggregation
- data: table
- derived data: table
 - key attrs x,y for pixels
 - quant attrib: overplot density
- dense space-filling 2D matrix
- color: sequential categorical hue + ordered luminance colormap

Idiom: **scented widgets**

- augment widgets for filtering to show *information scent*
 - cues to show whether value in drilling down further vs looking elsewhere
- concise, in part of screen normally considered control panel

Idiom: **boxplot**

- static item aggregation
- task: find distribution
- data: table
- derived data
 - 5 quant attribs
 - median: central line
 - lower and upper quartile: boxes
 - lower upper fences: whiskers
 - values beyond which items are outliers
 - outliers beyond fence cutoffs explicitly shown

[40 years of boxplots. Wickham and Stryjewski. 2012. had.co.nz]
Idiom: **Hierarchical parallel coordinates**

- dynamic item aggregation
- derived data: *hierarchical clustering*
- encoding:
 - cluster band with variable transparency, line at mean, width by min/max values
 - color by proximity in hierarchy

Spatial aggregation

- MAUP: Modifiable Areal Unit Problem
 - gerrymandering (manipulating voting district boundaries) is one example!

[http://www.e-education.psu.edu/geog486/l4_p7.html, Fig 4.cg.6]
Dimensionality reduction

- attribute aggregation
 - derive low-dimensional target space from high-dimensional measured space
 - use when you can’t directly measure what you care about
 - true dimensionality of dataset conjectured to be smaller than dimensionality of measurements
 - latent factors, hidden variables

Tumor Measurement Data

data: 9D measured space

derived data: 2D target space
Idiom: Dimensionality reduction for documents

Task 1

Input: HD data
Output: 2D data

What?
- In High-dimensional data
- Out 2D data

Why?
- Produce
- Derive

Task 2

Input: 2D data
Output: Scatterplot Clusters & points

What?
- In 2D data
- Out Scatterplot
- Out Clusters & points

Why?
- Discover
- Explore
- Identify

How?
- Encode
- Navigate
- Select

Task 3

Input: Scatterplot Clusters & points
Output: Labels for clusters

What?
- In Scatterplot Clusters & points
- Out Labels for clusters

Why?
- Produce
- Annotate
Demo 2: Internet Use

• Credit: Ben Jones

• Tableau Lessons
 – more maps, dual axes
 – linked views (apply filter to selected worksheets)
 – actions: highlight/hover

• Big Ideas
 – Tableau interactivity defaults not necessarily what you want
Demo 3: House Price Index

• Credit: Robert Kosara, from TCC 2014 talk Recreating News Visualizations in Tableau

• Tableau Lessons
 – more calculated field practice
 – create parameter
 – reference lines
 – interactive sliders

• Big Ideas
 – calculated fields plus interactivity gives you a lot of power and flexibility
Assignment 4

• finish/review House Price Index workbook

• add interactivity to last week’s story
 – update workbook
 – upload to Tableau Public
 – revise story to include embedded interactive

• final project proposal