Week 2: Arrange Tables

Tamara Munzner

Department of Computer Science University of British Columbia

JRNL 520H, Special Topics in Contemporary Journalism: Data Visualization Week 2: 20 September 2016

http://www.cs.ubc.ca/~tmm/courses/journ16

Finding us

- office hours in Sing Tao bldg - I-ish to 3-ish pm Tuesdays in Room 313: Tamara and/or Caitlin -by appointment: Tamara in ICICS/CS bldg Room X661
- email other times

-<u>tmm@cs.ubc.ca</u>, <u>caitlin@discoursemedia.org</u>

 course page is font of all information -don't forget to refresh, frequent updates -<u>http://www.cs.ubc.ca/~tmm/courses/journ16</u>

Last Time

Demo I: Basic Visual Encoding & Dashboarding

- Tableau Lessons
 - Dimensions (categorical) and Measures (quantitative)
 - -drag and drop to create visual encodings
 - -combining multiple charts side by side into dashboards
- Big Ideas
 - -see different patterns with different visual encodings

Demo 2:Vancouver Election Results

- Tableau Lessons
 - -sorting along axis
 - -disaggregate into multiple charts

- Big Ideas
 - -absolute numbers can sometimes mislead
 - -check hunches with relative percentages!

Demo 3:Vancouver Crime

- Tableau Lessons
 - -multiple pills on a shelf, pill ordering
 - -show filters
 - -undo
 - -duplicate & rename tabs
- Big Ideas
 - -underlying causes can be tricky to understand

Arrange Tables

How?

Er	ncode		Manipulate		
→ Express	→ Separate	 → Map from categorical and ordered attributes 			
→ Order	→ Align	→ Color → Hue → Saturation → Luminance	→ Select		
		→ Size, Angle, Curvature,	•••		
→ Use		• ■ ■ ///))) → Shape + ● ■ ▲	 → Navigate < · · · · · · · · · · · · · · · · · · ·		
		→ Motion Direction, Rate, Frequency,			
What? Why? How?					

→ Aggregate

Encode → Arrange → Express → Separate \longleftrightarrow → Order → Align

Encode tables: Arrange space

Encode

- → Arrange
 - → Express
 - \longleftrightarrow
 - → Order

→ Align

→ Separate

....

....

Keys and values

 classify arrangements by key count -0, 1, 2, many...

→ Tables

Recursive Subdivision

Idiom: scatterplot

- express values -quantitative attributes
- no keys, only values

-data

- 2 quant attribs
- -mark: points
- -channels
 - horiz + vert position
- -tasks
 - find trends, outliers, distribution, correlation, clusters
- -scalability
 - hundreds of items

[A layered grammar of graphics. Wickham. Journ. Computational and Graphical Statistics 19:1 (2010), 3–28.]

Some keys: Categorical regions

- regions: contiguous bounded areas distinct from each other -using space to *separate* (proximity)
 - -following expressiveness principle for categorical attributes
- use ordered attribute to order and align regions

Matrix

 \rightarrow 3 Keys Volume

Recursive Subdivision

Idiom: bar chart

- ne key, one value
 data
 I categ attrib, I quant attrib • one key, one value -data

 - -mark: lines
 - -channels
 - length to express quant value
 - spatial regions: one per mark
 - separated horizontally, aligned vertically
 - ordered by quant attrib
 - by label (alphabetical), by length attrib (data-driven) **>>**

-task

- compare, lookup values
- -scalability
 - dozens to hundreds of levels for key attrib

Animal Type

Animal Type

Separated and Aligned but not Ordered

LIMITATION: Hard to know rank. What's the 4th most? The 7th?

Separated, Aligned and Ordered

Separated but not Ordered or Aligned

LIMITATION: Hard to make comparisons

Idiom: stacked bar chart

• one more key

-data

- 2 categ attrib, I quant attrib
- -mark: vertical stack of line marks
 - glyph: composite object, internal structure from multiple marks
- -channels
 - length and color hue
 - spatial regions: one per glyph

– aligned: full glyph, lowest bar component

– unaligned: other bar components

-task

- part-to-whole relationship
- -scalability
 - several to one dozen levels for stacked attrib

[Using Visualization to Understand the Behavior of Computer Systems. Bosch. Ph.D. thesis, Stanford Computer Science, 2001.]

Idiom: streamgraph

- generalized stacked graph
 - -emphasizing horizontal continuit
 - vs vertical items
 - -data
 - I categ key attrib (artist)
 - I ordered key attrib (time)
 - I quant value attrib (counts)
 - -derived data
 - geometry: layers, where height encodes counts
 - I quant attrib (layer ordering)
 - -scalability
 - hundreds of time keys
 - dozens to hundreds of artist keys

- more than stacked bars, since most layers don't extend across whole chart

[Stacked Graphs Geometry & Aesthetics. Byron and Wattenberg. IEEE Trans. Visualization and Computer Graphics (Proc. InfoVis 2008) 14(6): 1245–1252, (2008).]

Idiom: line chart

• one key, one value

-data

- 2 quant attribs
- -mark: points
 - line connection marks between them
- -channels
 - aligned lengths to express quant value
 - separated and ordered by key attrib into horizontal regions
- -task
 - find trend
 - connection marks emphasize ordering of items along key axis by explicitly showing relationship between one item and the next

Choosing bar vs line charts

- depends on type of key attrib
 - -bar charts if categorical -line charts if ordered
- do not use line charts for categorical key attribs
 - -violates expressiveness principle
 - implication of trend so strong that it overrides semantics!
 - "The more male a person is, the taller he/she is"

Memory and Cognition 27:6 (1999), 1073–1079.]

after [Bars and Lines: A Study of Graphic Communication. Zacks and Tversky.

Idiom: heatmap

- two keys, one value
 - -data
 - 2 categ attribs (gene, experimental condition)
 - I quant attrib (expression levels)
 - -marks: area
 - separate and align in 2D matrix

 indexed by 2 categorical attributes
 - -channels
 - color by quant attrib
 - (ordered diverging colormap)

-task

- find clusters, outliers
- -scalability
 - IM items, 100s of categ levels, ~10 quant attrib levels

Many Keys Recursive Subdivision

Idiom: cluster heatmap

- in addition
 - -derived data
 - 2 cluster hierarchies
 - -dendrogram
 - parent-child relationships in tree with connection line marks
 - leaves aligned so interior branch heights easy to compare
 - -heatmap
 - marks (re-)ordered by cluster hierarchy traversal

Idioms: scatterplot matrix, parallel coordinates

- scatterplot matrix (SPLOM)
 - -rectilinear axes, point mark
 - -all possible pairs of axes
 - -scalability
 - one dozen attribs
 - dozens to hundreds of items
- parallel coordinates
 - -parallel axes, jagged line representing item
 - -rectilinear axes, item as point
 - axis ordering is major challenge
 - -scalability
 - dozens of attribs
 - hundreds of items

Parallel Coordinates

Table

Math	Physics	Dance	Drama
85	95	70	65
90	80	60	50
65	50	90	90
50	40	95	80
40	60	80	90

Task: Correlation

- scatterplot matrix -positive correlation
 - diagonal low-to-high
 - -negative correlation
 - diagonal high-to-low
 - -uncorrelated
- parallel coordinates
 - -positive correlation
 - parallel line segments
 - -negative correlation
 - all segments cross at halfway point
 - -uncorrelated
 - scattered crossings

[Hyperdimensional Data Analysis Using Parallel Coordinates. Wegman. Journ. American Statistical Association 85:411 (1990), 664–675.]

[A layered grammar of graphics. Wickham. Journ. Computational and Graphical Statistics 19:1 (2010), 3-28.]

Figure 3. Parallel Coordinate Plot of Six-Dimensional Data Illustrating Correlations of $\rho = 1, .8, .2, 0, -.2, -.8, and -1$.

Idioms: radial bar chart, star plot

radial bar chart

-radial axes meet at central ring, line mark

• star plot

-radial axes, meet at central point, line mark

• bar chart

-rectilinear axes, aligned vertically

accuracy

-length unaligned with radial

• less accurate than aligned with rectilinear

[Vismon: Facilitating Risk Assessment and Decision Making In Fisheries Management. Booshehrian, Möller, Peterman, and Munzner. Technical Report TR 2011-04, Simon Fraser University, School of Computing Science, 2011.]

Radial Orientation: Radar Plots

LIMITATION: Not good when categories aren't cyclic

[Slide courtesy of Ben Jones]

- -Violent Disorder
- Public Disorder
- Missile Throwing
- Pitch Incursion
- Alcohol Offences
- Ticket Touting
- Possession of Offensive Weapon
- Use or Possession of Fireworks or Flares

[

- -Breach of Banning Order
- -B-Offences against Property

"Diagram of the causes of mortality in the army in the East" (1858)

"Radar graphs: Avoid them (99.9% of the time)"

Os sinais da bússola eleitoral

Disputa de 2010 foi parecida com a de 2006

Alberto Caleo. Alexandre Mansar, Carlos Eduardo Cruz Garcia. Elliseu Barrelira Junior, Marco Vergotti e Ricardo Mendoca

O PRIMEIRO TURNO da eleição presidencial de 2010 foi muito parecido com o da disputa de 2006. A petista Dilma Rousself teve apenas 17 ponto percentual a menos que o indice obtido pelo presidente Luía quatro anos atrás. A concentração maior de seus votos também foi no Nordeste. Dessa vez, porém, a disputa foi um pouco menos polarizada. Os votos que provocaram segundo turno foram divididos entre o tucano José Serra e a verde Marina Silva.

Eleitores 135.80-6433, abstenção: 24.610.296 (18.12%). votos válidos: 101.590.153 (91.36%), votos brancos 3.479.340 (3.139) e votos nulos: 6.124.254 (5.519)

Candidatos		80%		Votos		
Dima Rousself ero		-	46.9%	(47.651.434)		
losé Sena (PSNe)		32.6%		CI3132.2030		
Marina Silva ono	19,2	6		(19.636.359)		
Outros vandidatos	%	Votos				
Plinio-IPS00	0,87% (006.010					
José Maria Dynael (PROC)	0,09%	685	3508			
Zé Maria (PSTM)	0,08%	684	16050			
Levy Fidilis grame	0,06%	67	9600	Such		
Isan Pinheiro (PCID)	0,04%	05/060		Superio		
Rui Costa Pimenta Pose	0.05%	02	2060	Elatora (TSL		

2) EPOCA, 30-de agosto de 2010

11.4%

40,200

http://www.thefunctionalart.com/2012/11/radar-graphs-avoid-them-999-of-time.html

[Slide courtesy of Ben Jones]

resultade

José Serra

de Serva 52.25

Idioms: pie chart, polar area chart

• pie chart

-area marks with angle channel

-accuracy: angle/area much less accurate than line length

- polar area chart
 - -area marks with length channel
 - -more direct analog to bar charts
- data

- I categ key attrib, I quant value attrib

• task

-part-to-whole judgements

[A layered grammar of graphics. Wickham. Journ. Computational and Graphical Statistics 19:1 (2010), 3–28.]

31

Idioms: normalized stacked bar chart

• task

-part-to-whole judgements

- normalized stacked bar chart
 - -stacked bar chart, normalized to full vert height
 - -single stacked bar equivalent to full pie
 - high information density: requires narrow rectangle
- pie chart
 - -information density: requires large circle

http://bl.ocks.org/mbostock/3887235, http://bl.ocks.org/mbostock/3886208, http://bl.ocks.org/mbostock/3886394.

Idiom: glyphmaps

rectilinear good for linear vs nonlinear trends

[Glyph-maps for Visually Exploring Temporal Patterns in Climate Data and Models.Wickham, Hofmann,Wickham, and Cook. Environmetrics 23:5 (2012), 382–393.]

Orientation limitations

- rectilinear: scalability wrt #axes
 - 2 axes best
 - 3 problematic
 - more in afternoon
 - 4+ impossible
- parallel: unfamiliarity, training time
- radial: perceptual limits

–asymmetry: angles lower precision than lengths

[Uncovering Strengths and Weaknesses of Radial Visualizations - an Empirical Approach. Diehl, Beck and Burch. IEEE TVCG (Proc. InfoVis) 16(6):935–942, 2010.]

Layout Density

→ Dense

dense software overviews

[Visualization of test information to assist fault localization. Jones, Harrold, Stasko. Proc. ICSE 2002, p 467-477.]

Basic Timelines – Working with Dates

Column Charts

Inverted Column Charts

Gantt Charts

A PRESIDENTIAL GANTT CHART

		 					an and a second		
	George Washington		Civil War		WW1	mmi		Civil Rights	Today
	John Adams								-
	Thomas Jefferson								1
	James Madison								i
	James Monroe								1
	John Quincy Adams								1
	Andrew Jackson	1							1
	Martin Van Buren								1
	William Henry Harrison								1
)	John Tyler								1
L	James K. Polk								
2	Zachary Taylor								
3	Millard Fillmore								1
6	Franklin Pierce	i		1					1
5	James Buchanan			1 Contraction					
5	Abraham Lincoln			ſ					
7	Andrew Johnson			1					i i
3	Ulysses S. Grant	1							1
2	Rutherford B. Hayes								
)	James A. Garfield	1							1
1	Chester A. Arthur	1		1					
2	Grover Cleveland	1			- 11				
3	Benjamin Harrison				1.11				
ŧ	Grover Cleveland	1			- H.				1
5	William McKinley	1							
5	Theodore Roosevelt	1							
7	William Howard Taft					<u> </u>			-
3	Woodrow Wilson	1							
5	Warren G. Harding	1		1	_				-
5	Calvin Coolidge			1		1 - 1			
í	Herbert Hoover			-					-
2	Franklin D. Roosevelt	1		-					
8	Harry S. Truman	1		-		_		-	
6	Dwight D. Eisenhower						_		
							_	L	-
5	John F. Kennedy	1						1	
5	Lyndon B. Johnson	1						<u> </u>	-
7	Richard Nixon Gerald Ford							.	
3						-			
9	Jimmy Carter							_	
)	Ronald Reagan	1							i
	George H. W. Bush								
2	Bill Clinton	1							
3	George W. Bush	1					L		
ŧ	Barack Obama	Revolutionary W	Var						

Source: http://en.wikipedia.org/wiki/List of Presidents of the United States

Slopegraphs

Change from Previous

Connected Scatterplots

Dual Axis Line Plots

Next

- Break (15 min)
- Demos (45 min)
 - Caitlin will walk through Tableau demos
 - you follow along step by step on your own laptop
 - -Tamara will rove the room to help out folks who get stuck
- Lab (30 min)
 - you'll get started on Tableau assignment