Week 1: Intro, Tasks and Data, Marks and Channels

Tamara Munzner

Department of Computer Science University of British Columbia

JRNL 520H, Special Topics in Contemporary Journalism: Data Visualization Week I: 13 September 2016

http://www.cs.ubc.ca/~tmm/courses/journ16

Who's who

Instructor: Tamara Munzner
 UBC Computer Science

- Instructor: Caitlin Havlak
 - Discourse Media

Class time

- 6 weeks, Sep 13 Oct 18 -once/week, 3 hr session 9:30am-12:30pm
- standard week
 - -foundations lecture/discussion: 80 min
 - -break: 15 min
 - -demos: 45 min
 - -lab: 30 min
- office hrs: I-3pm most weeks

Structure

- participation, 10%
 - -attend lectures and demos, discuss
 - tell us in advance if you'll miss class (and why)
 - tell when us recover if you were ill
- homework, 90%
 - -gradual transition from structured to open-ended
 - -60%: 5 assignments
 - best 4 out of 5 marks used, so 15% each
 - start in lab time, finish over the subsequent week
 - due just before next class session (9am)
 - some solo, some in groups of 2
 - -30%: final assignment
 - find your own interesting data and design your own visualization for it

Further reading

- optional textbook for following up on visualization foundations lectures
 - -Tamara Munzner. Visualization Analysis and Design. CRC Press, 2014.
 - <u>http://www.cs.ubc.ca/~tmm/vadbook/</u>
 - -library has multiple ebook copies
 - -to buy yourself, see course page
- optional textbook for more about Tableau software
 - -Ben Jones, Communicating Data with Tableau. O'Reilly, 2014.
 - <u>http://dataremixed.com/books/cdwt/</u>
- optional papers/books
 - -links and references posted on course page
 - -if DL links, use library EZproxy from off campus

Finding us

- office hours in Sing Tao bldg

 I-3pm Tuesdays: Tamara and/or Caitlin
 by appointment: Tamara in ICICS/CS bldg Room X661
- email other times

-<u>tmm@cs.ubc.ca</u>, <u>caitlin@discoursemedia.org</u>

course page is font of all information

 don't forget to refresh, frequent updates
 <u>http://www.cs.ubc.ca/~tmm/courses/journ16</u>

Topics

- Week I
 - Intro
 - Tasks and Data
 - Marks and Channels
- Week 2
 - Arrange Data Tables
- Week 3
 - Color
 - Arrange Spatial Data

- Week 4
 - Manipulate, Facet, Reduce

- Week 5
 - Wrangle
 - Stories
 - Rules of Thumb
- Week 6
 - Networks
 - Regression Lines
 - Vis in Newsrooms

Introduction: Defining visualization (vis)

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

Why?...

Why have a human in the loop?

Computer-based visualization systems provide visual representations of datasets designed to hele people arry out tasks more effectively. Visualization is suitable when there is a need to augment human capabilities rather than replace people with computational decision-making methods.

don't need vis when fully automatic solution exists and is trusted

many analysis problems ill-specified

-don't know exactly what questions to ask in advance

- possibilities
 - -long-term use for end users (e.g. exploratory analysis of scientific data)
 - -presentation of known results
 - stepping stone to better understanding of requirements before developing models
 - -help developers of automatic solution refine/debug, determine parameters
 - -help end users of automatic solutions verify, build trust

Why use an external representation?

Computer-based visualization systems providevisual representations of datasets designed to help people carry out tasks more effectively.

• external representation: replace cognition with perception

Expression color scale

Why depend on vision?

Computer-based visualization systems providevisual epresentations of datasets designed to help people carry out tasks more enectively.

- human visual system is high-bandwidth channel to brain
 - overview possible due to background processing
 - subjective experience of seeing everything simultaneously
 - significant processing occurs in parallel and pre-attentively
- sound: lower bandwidth and different semantics
 - -overview not supported
 - subjective experience of sequential stream
- touch/haptics: impoverished record/replay capacity -only very low-bandwidth communication thus far
- taste, smell: no viable record/replay devices

Why show the data in detail?

- summaries lose information
 - -confirm expected and find unexpected patterns
 - -assess validity of statistical model

Anscombe's Quartet

Identical statistics

x mean	9
x variance	10
y mean	7.5
y variance	3.75
x/y correlation	0.816

Why focus on tasks and effectiveness?

Computer-based visualization systems provide visual representations of datasets designed to help people carry ou tasks more effectively.

- tasks serve as constraint on design (as does data)
 - -idioms do not serve all tasks equally!
 - challenge: recast tasks from domain-specific vocabulary to abstract forms
- most possibilities ineffective
 - -validation is necessary, but tricky
 - -increases chance of finding good solutions if you understand full space of possibilities
- what counts as effective?
 - -novel: enable entirely new kinds of analysis
 - -faster: speed up existing workflows

What resource limitations are we faced with?

Vis designers must take into account three very different kinds of resource limitations: those of computers, of humans, and of displays.

- computational limits
 - -processing time
 - -system memory
- human limits
 - –human attention and memory
- display limits
 - -pixels are precious resource, the most constrained resource
 - -information density: ratio of space used to encode info vs unused whitespace
 - tradeoff between clutter and wasting space, find sweet spot between dense and sparse

Analysis framework: Four levels, three questions

- domain situation
 - -who are the target users?
- abstraction
 - -translate from specifics of domain to vocabulary of vis
- what is shown? data abstraction
 - often don't just draw what you're given: transform to new form
- why is the user looking at it? task abstraction
- idiom
- how is it shown?
 - visual encoding idiom: how to draw
 - interaction idiom: how to manipulate
- algorithm

[A Multi-Level Typology of Abstract Visualization Tasks Brehmer and Munzner. IEEETVCG 19(12):2376-2385, 2013 (Proc. InfoVis 2013).]

-efficient computation

[A Nested Model of Visualization Design and Validation. Munzner. IEEETVCG 15(6):921-928, 2009 (Proc. InfoVis 2009).]

Why is validation difficult?

different ways to get it wrong at each level

Domain situation You misunderstood their needs

Data/task abstraction You're showing them the wrong thing

Wisual encoding/interaction idiom The way you show it doesn't work

Algorithm Your code is too slow

Why is validation difficult?

solution: use methods from different fields at each level

anthropology/ ethnography

design

computer science

cognitive psychology

anthropology/ ethnography

Domain situation Observe target users using existing tools Data/task abstraction Visual encoding/interaction idiom Justify design with respect to alternatives Algorithm WW Measure system time/memory Analyze computational complexity Analyze results qualitatively Measure human time with lab experiment (*lab study*) Observe target users after deployment (*field study*) Measure adoption

[A Nested Model of Visualization Design and Validation. Munzner. IEEE TVCG 15(6):921-928, 2009 (Proc. InfoVis 2009).]

technique-driven work

			What?		
	D	atasets			A
 → Data Types → Items → → Data and Dat Tables 	Attributes aset Types	→ Links Fields	→ Positions	→ Grids	 → Attribut → Cate + → Ord
Items Attributes	Trees Items (nodes) Links Attributes	Grids Positions Attributes	Items Positions	Sets, Lists Items	→ Or ↑ → Qu
→ Dataset Type → Tables Attribute (rows) Cell con → Multidimen Key 2 Attributes	S → N es (columns) taining value <i>sional Table</i> Value in cell	Vetworks	→ Fields (Co Grid (Node (item)	tes (columns)	 → Orderin → Sequ → Diven → Cyclic ↓
→ Geometry	(Spatial) Position		 → Dataset A → Static 	vailability	→ Dynamic

Attributes

ute Types

egorical

dered

rdinal

uantitative

ing Direction

uential

erging

ic

Three major datatypes

Dataset and data types

Data and Dataset Types

	Tables	Networks & Trees	Fields	Geometry	Cluste Sets, L
	Items	Items (nodes)	Grids	Items	Items
	Attributes	Links	Positions	Positions	
		Attributes	Attributes		
•	Data Types				
	→ Items -	Attributes	→ Links	→ Positions	→ Gric

Dataset Availability

→ Static

→ Dynamic

ds

Attribute types

Actions: Analyze

- consume
 - -discover vs present
 - classic split
 - aka explore vs explain
 - -enjoy
 - newcomer
 - aka casual, social
- produce
 - -annotate, record
 - -derive
 - crucial design choice

Derive

- don't just draw what you're given! -decide what the right thing to show is
 - -create it with a series of transformations from the original dataset -draw that
- one of the four major strategies for handling complexity

trade balance = exports – imports

Derived Data

Original Data

Actions: Search, query

- what does user know? → Search
 –target, location
- how much of the data matters?
 - -one, some, all

	Target k	nown
Location known	• • • •	Lookup
Location unknown	< <u>(</u>)	Locate

- independent choices for each of these three levels
 - -analyze, search, query
 - -mix and match

Analysis example: Derive one attribute

- Strahler number
 - centrality metric for trees/networks
 - derived quantitative attribute
 - draw top 5K of 500K for good skeleton

[Using Strahler numbers for real time visual exploration of huge graphs. Auber. Proc. Intl. Conf. Computer Vision and Graphics, pp. 56–69, 2002.]

→ Filter

Why: Targets

→ All Data

→ Trends → Outliers → Features

→ Attributes

How?

En	code		Manipulate
→ Arrange→ Express	→ Separate	 Map from categorical and ordered attributes 	Ohange Image
→ Order	→ Align	$\rightarrow Color$ $\rightarrow Hue \qquad \rightarrow Saturation \rightarrow Luminance$	Select
→ Use		→ Size, Angle, Curvature, ■ ■ □ /// □)))	→ Navigate
		→ Shape + ● ■ ▲	
What? Why? How?		Motion Direction, Rate, Frequency,	

Encoding visually

• analyze idiom structure

Definitions: Marks and channels

Encoding visually with marks and channels

• analyze idiom structure

-as combination of marks and channels

1: vertical position

2: vertical position horizontal position 3:

vertical position horizontal position color hue

mark: line

mark: point

mark: point

4: vertical position horizontal position color hue size (area)

mark: point

Channels

Channels: Rankings

- effectiveness principle
- -encode most important attributes with highest ranked channels
- expressiveness principle
- -match channel and data characteristics

Accuracy: Fundamental Theory

Steven's Psychophysical Power Law: S= I^N

Accuracy: Vis experiments

Cleveland & McGill's Results

[Crowdsourcing Graphical Perception: Using Mechanical Turk to Assess Visualization Design. Heer and Bostock. Proc ACM Conf. Human Factors in Computing Systems (CHI) 2010, p. 203– 212.]

Discriminability: How many usable steps?

 must be sufficient for number of attribute levels to show

-linewidth: few bins

[mappa.mundi.net/maps/maps 014/telegeography.html]

Separability vs. Integrality

Position + Hue (Color)

Fully separable

Size + Hue (Color)

Width + Height

Some interference

Some/significant interference

2 groups each

2 groups each

3 groups total: integral area

Red + Green

Major interference

4 groups total: integral hue

Popout

- find the red dot
 how long does it take?
- parallel processing on many individual channels
 - -speed independent of distractor count
 - -speed depends on channel and amount of difference from distractors
- serial search for (almost all) combinations
 speed depends on number of distractors

Popout

- many channels: tilt, size, shape, proximity, shadow direction, ...
- but not all! parallel line pairs do not pop out from tilted pairs

Grouping

- containment
- connection

Marks as Links

Relative vs. absolute judgements

- perceptual system mostly operates with relative judgements, not absolute
 - -that's why accuracy increases with common frame/scale and alignment
 - –Weber's Law: ratio of increment to background is constant
 - filled rectangles differ in length by 1:9, difficult judgement
 - white rectangles differ in length by 1:2, easy judgement

42 after [Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods. Cleveland and McGill. Journ. American Statistical Association 79:387 (1984), 531-554.]

B

Relative luminance judgements

• perception of luminance is contextual based on contrast with surroundings

http://persci.mit.edu/gallery/checkershadow

Relative color judgements

• color constancy across broad range of illumination conditions

Further reading

- Visualization Analysis and Design. Tamara Munzner. CRC Press, 2014.
 - Chap I, What's Vis, and Why Do It?
 - Chap 2, What: Data Abstraction
 - Chap 3, Why: Task Abstraction
 - Chap 4, Analysis: Four Levels for Validation
 - Chap 5, Marks and Channels
- <u>Crowdsourcing Graphical Perception: Using Mechanical Turk to Assess</u> Visualization Design. Jeffrey Heer and Michael Bostock. Proc. CHI 2010
- <u>Perception in Vision</u> web page with demos, Christopher Healey.
- Visual Thinking for Design. Colin Ware. Morgan Kaufmann, 2008.

Next

- Break (15 min)
- Demos (45 min)
 - Caitlin will walk through Tableau demos
 - you follow along step by step on your own laptop
 - -Tamara will rove the room to help out folks who get stuck
- Lab (30 min)
 - you'll get started on Tableau assignment

Demo I: Basic Visual Encoding & Dashboarding

- Tableau Lessons
 - Dimensions (categorical) and Measures (quantitative)
 - -drag and drop to create visual encodings
 - -combining multiple charts side by side into dashboards
- Big Ideas
 - -see different patterns with different visual encodings

Demo 2:Vancouver Election Results

- Tableau Lessons
 - -sorting along axis
 - -disaggregate into multiple charts

- Big Ideas
 - -absolute numbers can sometimes mislead
 - -check hunches with relative percentages!

Demo 3:Vancouver Crime

- Tableau Lessons
 - -multiple pills on a shelf, pill ordering
 - -show filters
 - -undo
 - -duplicate & rename tabs
- Big Ideas
 - -underlying causes can be tricky to understand

Demo 4: Back to the Future

Tableau Lessons

- -simple analytics: totals
- -more disaggregation practice
- -Show Me

- Big Ideas
 - -beyond simple bars
 - -challenges of missing data

Assignment

Music Sales

-work through workbook on your own

- -submit finished version (in workbook .twbx format)
- Vancouver Crime
 - -analyze further on your own
 - -write up brief news story (submit in PDF format)
 - < 500 words
 - up to 2 screenshots from Tableau
 - -write up reflections (submit in PDF format)
 - discuss dead ends
 - include Tableau screenshots
- submit before next class (9am Tue Sep 20)

-email tmm@cs.ubc.ca and caitlin@discoursemedia.org with subject JOURN Week I