Week 1: Intro, Tasks and Data, Marks and Channels

Tamara Munzner
Department of Computer Science
University of British Columbia

JRNL 520H, Special Topics in Contemporary Journalism: Data Visualization
Week 1: 13 September 2016

http://www.cs.ubc.ca/~tmm/courses/journ16
Who’s who

• Instructor: Tamara Munzner
 – UBC Computer Science

• Instructor: Caitlin Havlak
 – Discourse Media
Class time

• 6 weeks, Sep 13 - Oct 18
 – once/week, 3 hr session 9:30am-12:30pm

• standard week
 – foundations lecture/discussion: 80 min
 – break: 15 min
 – demos: 45 min
 – lab: 30 min

• office hrs: 1-3pm most weeks
Structure

• participation, 10%
 – attend lectures and demos, discuss
 • tell us in advance if you’ll miss class (and why)
 • tell when us recover if you were ill

• homework, 90%
 – gradual transition from structured to open-ended
 – 60%: 5 assignments
 • best 4 out of 5 marks used, so 15% each
 • start in lab time, finish over the subsequent week
 • due just before next class session (9am)
 – some solo, some in groups of 2
 – 30%: final assignment
 • find your own interesting data and design your own visualization for it
Further reading

• optional textbook for following up on visualization foundations lectures
 – library has multiple ebook copies
 – to buy yourself, see course page

• optional textbook for more about Tableau software
 • http://dataremixed.com/books/cdwt/

• optional papers/books
 – links and references posted on course page
 – if DL links, use library EZproxy from off campus
Finding us

• office hours in Sing Tao bldg
 – 1-3pm Tuesdays: Tamara and/or Caitlin
 – by appointment: Tamara in ICICS/CS bldg Room X661

• email other times
 – tmm@cs.ubc.ca, caitlin@discoursemedia.org

• course page is font of all information
 – don’t forget to refresh, frequent updates
 – http://www.cs.ubc.ca/~tmm/courses/journ16
Topics

• Week 1
 – Intro
 – Tasks and Data
 – Marks and Channels

• Week 2
 – Arrange Data Tables

• Week 3
 – Color
 – Arrange Spatial Data

• Week 4
 – Manipulate, Facet, Reduce

• Week 5
 – Wrangle
 – Stories
 – Rules of Thumb

• Week 6
 – Networks
 – Regression Lines
 – Vis in Newsrooms
Introduction: Defining visualization (vis)

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

Why?...
Why have a human in the loop?

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

Visualization is suitable when there is a need to augment human capabilities rather than replace people with computational decision-making methods.

• don’t need vis when fully automatic solution exists and is trusted
• many analysis problems ill-specified
 – don’t know exactly what questions to ask in advance
• possibilities
 – long-term use for end users (e.g. exploratory analysis of scientific data)
 – presentation of known results
 – stepping stone to better understanding of requirements before developing models
 – help developers of automatic solution refine/debug, determine parameters
 – help end users of automatic solutions verify, build trust
Why use an external representation?

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

- external representation: replace cognition with perception
Why depend on vision?

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

• human visual system is high-bandwidth channel to brain
 – overview possible due to background processing
 • subjective experience of seeing everything simultaneously
 • significant processing occurs in parallel and pre-attentively

• sound: lower bandwidth and different semantics
 – overview not supported
 • subjective experience of sequential stream

• touch/haptics: impoverished record/replay capacity
 – only very low-bandwidth communication thus far

• taste, smell: no viable record/replay devices
Why show the data in detail?

- summaries lose information
 - confirm expected and find unexpected patterns
 - assess validity of statistical model

Anscombe’s Quartet

<table>
<thead>
<tr>
<th>Identical statistics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>x mean</td>
<td>9</td>
</tr>
<tr>
<td>x variance</td>
<td>10</td>
</tr>
<tr>
<td>y mean</td>
<td>7.5</td>
</tr>
<tr>
<td>y variance</td>
<td>3.75</td>
</tr>
<tr>
<td>x/y correlation</td>
<td>0.816</td>
</tr>
</tbody>
</table>
Why focus on tasks and effectiveness?

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

• tasks serve as constraint on design (as does data)
 – idioms do not serve all tasks equally!
 – challenge: recast tasks from domain-specific vocabulary to abstract forms

• most possibilities ineffective
 – validation is necessary, but tricky
 – increases chance of finding good solutions if you understand full space of possibilities

• what counts as effective?
 – novel: enable entirely new kinds of analysis
 – faster: speed up existing workflows
Vis designers must take into account three very different kinds of resource limitations: those of computers, of humans, and of displays.

- computational limits
 - processing time
 - system memory
- human limits
 - human attention and memory
- display limits
 - pixels are precious resource, the most constrained resource
 - information density: ratio of space used to encode info vs unused whitespace
 - tradeoff between clutter and wasting space, find sweet spot between dense and sparse
Why analyze?

- imposes structure on huge design space
 - scaffold to help you think systematically about choices
 - analyzing existing as stepping stone to designing new
 - most possibilities ineffective for particular task/data combination

What?

- **Tree**

Why?

- **Actions**
 - Present
 - Locate
 - Identify
 - Encode
 - Navigate
 - Select
 - Filter
 - Aggregate

- **Targets**
 - Path between two nodes
 - *SpaceTree*
 - *TreeJuxtaposer*

How?

- **SpaceTree**

- **TreeJuxtaposer**

Analysis framework: Four levels, three questions

- **domain** situation
 - who are the target users?

- **abstraction**
 - translate from specifics of domain to vocabulary of vis

- **what** is shown? **data abstraction**
 - often don’t just draw what you’re given: transform to new form

- **why** is the user looking at it? **task abstraction**

- **idiom**

- **how** is it shown?
 - visual encoding idiom: how to draw
 - interaction idiom: how to manipulate

- **algorithm**
 - efficient computation

Why is validation difficult?

- different ways to get it wrong at each level

- **Domain situation**
 - You misunderstood their needs

- **Data/task abstraction**
 - You’re showing them the wrong thing

- **Visual encoding/interaction idiom**
 - The way you show it doesn’t work

- **Algorithm**
 - Your code is too slow
Why is validation difficult?

- solution: use methods from different fields at each level

- **Domain situation**
 - Observe target users using existing tools

- **Data/task abstraction**
 - **Visual encoding/interaction idiom**
 - Justify design with respect to alternatives
 - **Algorithm**
 - Measure system time/memory
 - Analyze computational complexity
 - Analyze results qualitatively
 - Measure human time with lab experiment (*lab study*)
 - Observe target users after deployment (*field study*)
 - Measure adoption

- **Problem-driven work**
- **Technique-driven work**

What?

- **Data Types**
 - Items
 - Attributes
 - Links
 - Positions
 - Grids

- **Data and Dataset Types**

<table>
<thead>
<tr>
<th>Tables</th>
<th>Networks & Trees</th>
<th>Fields</th>
<th>Geometry</th>
<th>Clusters, Sets, Lists</th>
</tr>
</thead>
<tbody>
<tr>
<td>Items</td>
<td>Items (nodes)</td>
<td>Grids</td>
<td>Items</td>
<td>Items</td>
</tr>
<tr>
<td>Attributes</td>
<td>Links</td>
<td>Positions</td>
<td>Attributes</td>
<td>Positions</td>
</tr>
</tbody>
</table>

- **Attribute Types**
 - Categorical
 - Ordered
 - Ordinal
 - Quantitative

- **Dataset Types**
 - Tables
 - Networks
 - Fields (Continuous)

- **Ordering Direction**
 - Sequential
 - Diverging
 - Cyclic

- **Geometry (Spatial)**

- **Dataset Availability**
 - Static
 - Dynamic
Three major datatypes

Dataset Types

→ Tables

→ Multidimensional Table

→ Networks

→ Trees

→ Spatial

→ Fields (Continuous)

→ Geometry (Spatial)

• visualization vs computer graphics
 – geometry is design decision
Dataset and data types

Data and Dataset Types

- Tables
 - Items
 - Attributes

- Networks & Trees
 - Items (nodes)
 - Links
 - Attributes

- Fields
 - Grids
 - Positions
 - Attributes

- Geometry
 - Items
 - Positions

- Clusters, Sets, Lists
 - Items

Data Types

- Items
- Attributes
- Links
- Positions
- Grids

Dataset Availability

- Static
- Dynamic
Attribute types

- **Attribute Types**
 - Categorical
 - Ordered
 - Ordinal
 - Quantitative
 - Ordinal

- **Ordering Direction**
 - Sequential
 - Diverging
 - Cyclic
• \{action, target\} pairs
 – discover distribution
 – compare trends
 – locate outliers
 – browse topology
Actions: Analyze

• consume
 – discover vs present
 • classic split
 • aka explore vs explain
 – enjoy
 • newcomer
 • aka casual, social

• produce
 – annotate, record
 – derive
 • crucial design choice
Derive

• don’t just draw what you’re given!
 – decide what the right thing to show is
 – create it with a series of transformations from the original dataset
 – draw that

• one of the four major strategies for handling complexity

Original Data

\[
\text{trade balance} = \text{exports} - \text{imports}
\]

Derived Data

\[
\text{trade balance} = \text{exports} - \text{imports}
\]
Actions: Search, query

- what does user know? (Search)
 - target, location

- how much of the data matters?
 - one, some, all

- independent choices for each of these three levels
 - analyze, search, query
 - mix and match

<table>
<thead>
<tr>
<th>Location known</th>
<th>Target known</th>
<th>Target unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lookup</td>
<td></td>
<td>Browse</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location unknown</th>
<th>Target known</th>
<th>Target unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locate</td>
<td></td>
<td>Explore</td>
</tr>
</tbody>
</table>
Analysis example: Derive one attribute

- Strahler number
 - centrality metric for trees/networks
 - derived quantitative attribute
 - draw top 5K of 500K for good skeleton

Task 1

- **What?**
 - In Tree
 - Out Quantitative attribute on nodes
- **Why?**
 - Derive

Task 2

- **What?**
 - In Tree
 - In Quantitative attribute on nodes
- **Why?**
 - Summarize
- **How?**
 - Reduce
 - Filter

- **What?**
 - In Tree
 - Out Quantitative attribute on nodes
- **Why?**
 - Topology
- **How?**
 - Reduce
 - Filter

Out
Filtered Tree
Removed unimportant parts
Why: Targets

- **All Data**
 - Trends
 - Outliers
 - Features

- **Attributes**
 - One
 - Distribution
 - Extremes
 - Many
 - Dependency
 - Correlation
 - Similarity

- **Network Data**
 - Topology
 - Paths

- **Spatial Data**
 - Shape
How?

Encode

- **Arrange**
 - Express
 - Separate

- **Order**
 - Align

- **Use**
 - Map
 - from categorical and ordered attributes
 - Color
 - Hue
 - Saturation
 - Luminance
 - Size, Angle, Curvature, ...
 - Shape
 - + • □ ▲
 - Motion
 - Direction, Rate, Frequency, ...

- **Manipulate**
 - Change
 - Select
 - Navigate

- **Facet**
 - Juxtapose

- **Reduce**
 - Filter
 - Aggregate
 - Embed

What?

Why?

How?
Encoding visually

• analyze idiom structure
Definitions: Marks and channels

- **marks**
 - geometric primitives

 - **Points**
 - **Lines**
 - **Areas**

- **channels**
 - control appearance of marks

 - **Position**
 - Horizontal
 - Vertical
 - Both

 - **Color**

 - **Shape**

 - **Size**
 - Length
 - Area
 - Volume
Encoding visually with marks and channels

• analyze idiom structure
 – as combination of marks and channels

1: vertical position
mark: line

2: vertical position
horizontal position
mark: point

3: vertical position
horizontal position
color hue
mark: point

4: vertical position
horizontal position
color hue
size (area)
mark: point
Channels

Position on common scale
Position on unaligned scale
Length (1D size)
Tilt/angle
Area (2D size)
Depth (3D position)
Color luminance
Color saturation
Curvature
Volume (3D size)
Spatial region
Color hue
Motion
Shape
Channels: Rankings

Magnitude Channels: Ordered Attributes

- Position on common scale
- Position on unaligned scale
- Length (1D size)
- Tilt/angle
- Area (2D size)
- Depth (3D position)
- Color luminance
- Color saturation
- Curvature
- Volume (3D size)

Identity Channels: Categorical Attributes

- Spatial region
- Color hue
- Motion
- Shape

- **effectiveness principle**
 - encode most important attributes with highest ranked channels

- **expressiveness principle**
 - match channel and data characteristics
Accuracy: Fundamental Theory

Steven’s Psychophysical Power Law: $S = I^N$
Accumacy: Vis experiments

Cleveland & McGill's Results

Crowdsourced Results

Positions

Angles

Circular areas

Rectangular areas (aligned or in a treemap)

Log Error

Log Error

Discriminability: How many usable steps?

• must be sufficient for number of attribute levels to show
 – linewidth: few bins

[mappa.mundi.net/maps/maps_014/telegeography.html]
Separability vs. Integrality

Position + Hue (Color)

2 groups each

Size + Hue (Color)

2 groups each

Width + Height

3 groups total: integral area

Red + Green

4 groups total: integral hue

Fully separable

Some interference

Some/significant interference

Major interference
• find the red dot
 – how long does it take?
• parallel processing on many individual channels
 – speed independent of distractor count
 – speed depends on channel and amount of difference from distractors
• serial search for (almost all) combinations
 – speed depends on number of distractors
Popout

- many channels: tilt, size, shape, proximity, shadow direction, ...
- but not all! parallel line pairs do not pop out from tilted pairs
Grouping

• containment
• connection

Marks as Links

- Containment

- Connection

Identity Channels: Categorical Attributes

- Spatial region
- Color hue
- Motion
- Shape

- proximity
 - same spatial region
- similarity
 - same values as other categorical channels
Relative vs. absolute judgements

• perceptual system mostly operates with relative judgements, not absolute
 – that’s why accuracy increases with common frame/scale and alignment
 – Weber’s Law: ratio of increment to background is constant
 • filled rectangles differ in length by 1:9, difficult judgement
 • white rectangles differ in length by 1:2, easy judgement

![Diagram of length and position along aligned and unaligned scales]

Relative luminance judgements

- perception of luminance is contextual based on contrast with surroundings

[Image: A diagram showing the effect of shadow on perceived luminance.]

http://persci.mit.edu/gallery/checkershadow
Relative color judgements

• color constancy across broad range of illumination conditions

http://www.purveslab.net/seeforyourself/
Further reading

 – Chap 1, What’s Vis, and Why Do It?
 – Chap 2, What: Data Abstraction
 – Chap 3, Why: Task Abstraction
 – Chap 4, Analysis: Four Levels for Validation
 – Chap 5, Marks and Channels

• Crowdsourcing Graphical Perception: Using Mechanical Turk to Assess Visualization Design. Jeffrey Heer and Michael Bostock. Proc. CHI 2010

• Perception in Vision web page with demos, Christopher Healey.

Next

• Break (15 min)

• Demos (45 min)
 – Caitlin will walk through Tableau demos
 – you follow along step by step on your own laptop
 – Tamara will rove the room to help out folks who get stuck

• Lab (30 min)
 – you’ll get started on Tableau assignment
Demo 1: Basic Visual Encoding & Dashboarding

• Tableau Lessons
 – Dimensions (categorical) and Measures (quantitative)
 – drag and drop to create visual encodings
 – combining multiple charts side by side into dashboards

• Big Ideas
 – see different patterns with different visual encodings
Demo 2: Vancouver Election Results

• Tableau Lessons
 – sorting along axis
 – disaggregate into multiple charts

• Big Ideas
 – absolute numbers can sometimes mislead
 – check hunches with relative percentages!
Demo 3: Vancouver Crime

• Tableau Lessons
 – multiple pills on a shelf, pill ordering
 – show filters
 – undo
 – duplicate & rename tabs

• Big Ideas
 – underlying causes can be tricky to understand
Demo 4: Back to the Future

• Tableau Lessons
 – simple analytics: totals
 – more disaggregation practice
 – Show Me

• Big Ideas
 – beyond simple bars
 – challenges of missing data
Assignment

- **Music Sales**
 - work through workbook on your own
 - submit finished version (in workbook .twbx format)
- **Vancouver Crime**
 - analyze further on your own
 - write up brief news story (submit in PDF format)
 - < 500 words
 - up to 2 screenshots from Tableau
 - write up reflections (submit in PDF format)
 - discuss dead ends
 - include Tableau screenshots
- submit before next class (9am Tue Sep 20)
 - email tmm@cs.ubc.ca and caitlin@discoursemedia.org with subject JOURN Week 1