Why focus on tasks and effectiveness?
- tasks serve as constraint on design (as does data)
 - idioms do not serve all
 - Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

Further reading
- optional textbook for following up on visualization foundations lectures
- optional papers/books
 - links and references posted on course page
- if DL links, use library EZproxy from off campus

Week 1: Intro, Tasks and Data, Marks and Channels
Tamara Munzner
University of British Columbia

Why have a human in the loop?
Computer-based visualization systems provide visual representations if datasets designed to help people carry out tasks more effectively.
- don't need vis when fully automatic solution exists and is trusted
- don't just replace people with computational decision-making methods.

Why analyze?
- imposes structure on huge design space
- scaffold to help you think systematically about choices
- increasing chance of finding good solutions if you understand full space of possibilities

Why show the data in detail?
- summaries lose information
- confirmed and find unexpected patterns
- assess validity of statistical model

Why use an external representation?
Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.
- external representation: replace cognition with perception
- domain situation
 - who are the target users?
- task abstraction
 - computational limits
 - processing time
 - system memory
 - human limits
 - attention and memory
- display limits
 - pixels are precious resources, the most constrained resource
 - information density ratio of space used to encode info vs unused whitespace
 - tradeoff between clutter and viewing space, find sweet spot between design and space

Why focus on tasks and effectiveness?
Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.
- task abstraction
 - computational limits
 - processing time
 - system memory
 - human limits
 - attention and memory
- display limits
 - pixels are precious resources, the most constrained resource
 - information density ratio of space used to encode info vs unused whitespace
 - tradeoff between clutter and viewing space, find sweet spot between design and space

Why analyze?
- imposes structure on huge design space
 - scaffold to help you think systematically about choices
 - analyzing existing as stepping stone to designing new
- most possibilities ineffective for particular task/data combination

Why show the data in detail?
- summaries lose information
- confirmed and find unexpected patterns
- assess validity of statistical model

Why analyze?
- imposes structure on huge design space
 - scaffold to help you think systematically about choices
 - analyzing existing as stepping stone to designing new
- most possibilities ineffective for particular task/data combination

Analysis framework: Four levels, three questions
- domain situation
 - are the target users?
- abstraction
 - translate from specifics of domain to vocabulary of vis
 - what is shown? data abstraction
 - why is the user looking at it? task abstraction
- idiom
 - how is it shown?
 - visual encoding idiom: how to draw
 - interaction idiom: how to manipulate
- algorithm
 - efficient computation
Dataset and data types

- Data and Dataset Types
 - Tables
 - Networks & Fields
 - Geometry
 - Cluster, Trees
 - Bins
 - Attributes

- Data Types
 - Items
 - Positions

- Dataset Availability
 - Static
 - Dynamic

Derived

- don’t just draw what you’re given!
 - decide what the right thing to show is
 - create it with a series of transformations from the original dataset
 - draw data:
 - one of the four major strategies for handling complexity

Attribute types

- Attribute Types
 - Categorical
 - Ordered
 - Quantitative

- Ordering Direction
 - Sequential
 - Diverging
 - Cyclic

Actions: Search, query

- what does user know?
 - target, location

- how much of the data matters?
 - one, some, all

- independent choices for each of these three levels
 - analyze, search, query

Analysis example: Derive one attribute

- slider number
 - centrality metric for streets/networks
 - derived (quantitative attributes)
 - draw up $5 of $20K for good skeletons

Definitions: Marks and channels

- marks: positional primitives
 - geometric centers

- channels: visual appearance of marks
 - color

Encoding visually

- analyze symbol structure
 - as combination of marks and channels

Three major datatypes

- Data/Task abstraction
- Data/tasks
- What?
- Why?
- Attributes
- Data/Task Types
- Data and Task Types
- Tables
- Networks
- Spatial (Continuous)
- Geometry (Spatial)

- visualization vs computer graphics
- geometry vs design decisions

Actions: Analyze

- consumers

- discover vs present
 - classic split
 - also explore vs explain

- produce
 - newsletter
 - also causal, social

- produce
 - annotate, record
 - derive
 - crucial design choice

Derive

- new distributed
 - feature models
 - feature vectors
 - feature typology

Encoding visually with marks and channels

- analyze symbol structure
 - as combination of marks and channels

- marks: positional primitives

- channels: visual appearance of marks

Why is validation difficult?

- different ways to get it wrong at each level

- solution: use methods from different fields at each level

- problem-driven work

- data-driven work

Three major datatypes

- Data/Task abstraction
- Data/tasks
- What?
- Why?
- Attributes
- Data/Task Types
- Data and Task Types
- Tables
- Networks
- Spatial (Continuous)
- Geometry (Spatial)

- visualization vs computer graphics
- geometry vs design decisions

Actions: Analyze

- consumers

- discover vs present
 - classic split
 - also explore vs explain

- produce
 - newsletter
 - also causal, social

- produce
 - annotate, record
 - derive
 - crucial design choice

Derive

- new distributed
 - feature models
 - feature vectors
 - feature typology

Encoding visually with marks and channels

- analyze symbol structure
 - as combination of marks and channels

- marks: positional primitives

- channels: visual appearance of marks

Why is validation difficult?

- different ways to get it wrong at each level

- solution: use methods from different fields at each level

- problem-driven work

- data-driven work

Three major datatypes

- Data/Task abstraction
- Data/tasks
- What?
- Why?
- Attributes
- Data/Task Types
- Data and Task Types
- Tables
- Networks
- Spatial (Continuous)
- Geometry (Spatial)

- visualization vs computer graphics
- geometry vs design decisions

Actions: Analyze

- consumers

- discover vs present
 - classic split
 - also explore vs explain

- produce
 - newsletter
 - also causal, social

- produce
 - annotate, record
 - derive
 - crucial design choice

Derive

- new distributed
 - feature models
 - feature vectors
 - feature typology

Encoding visually with marks and channels

- analyze symbol structure
 - as combination of marks and channels

- marks: positional primitives

- channels: visual appearance of marks

Why is validation difficult?

- different ways to get it wrong at each level

- solution: use methods from different fields at each level

- problem-driven work

- data-driven work

Three major datatypes

- Data/Task abstraction
- Data/tasks
- What?
- Why?
- Attributes
- Data/Task Types
- Data and Task Types
- Tables
- Networks
- Spatial (Continuous)
- Geometry (Spatial)

- visualization vs computer graphics
- geometry vs design decisions

Actions: Analyze

- consumers

- discover vs present
 - classic split
 - also explore vs explain

- produce
 - newsletter
 - also causal, social

- produce
 - annotate, record
 - derive
 - crucial design choice

Derive

- new distributed
 - feature models
 - feature vectors
 - feature typology

Encoding visually with marks and channels

- analyze symbol structure
 - as combination of marks and channels

- marks: positional primitives

- channels: visual appearance of marks

Why is validation difficult?

- different ways to get it wrong at each level

- solution: use methods from different fields at each level

- problem-driven work

- data-driven work

Three major datatypes

- Data/Task abstraction
- Data/tasks
- What?
- Why?
- Attributes
- Data/Task Types
- Data and Task Types
- Tables
- Networks
- Spatial (Continuous)
- Geometry (Spatial)

- visualization vs computer graphics
- geometry vs design decisions

Actions: Analyze

- consumers

- discover vs present
 - classic split
 - also explore vs explain

- produce
 - newsletter
 - also causal, social

- produce
 - annotate, record
 - derive
 - crucial design choice

Derive

- new distributed
 - feature models
 - feature vectors
 - feature typology

Encoding visually with marks and channels

- analyze symbol structure
 - as combination of marks and channels

- marks: positional primitives

- channels: visual appearance of marks
Discriminability: How many usable steps?

- must be sufficient for number of attribute levels to show
 - line width: few bins

Separability vs. Integrity

- perceptual system mostly operates with relative judgements, not absolute
 - that's why accuracy increases with common frame/scale and alignment
 - Weber's Law: ratio of increment to background is constant
 - filled rectangles differ in length by 1:9, difficult judgement

Relative vs. absolute judgements

- perception of luminance is contextual based on contrast with surroundings

Relative luminance judgements

- color constancy across broad range of illumination conditions

Further reading

- Chap 1, What's Vis, and Why Do It?
- Chap 2, What Data Abstraction
- Chap 3, Why Such Abstraction
- Chap 4, Analyze Your Lenses for Visualization
- Chap 5, Marks and Channels

- Perception in Vis: web page with demos, Christopher Healey.
Demo 3: Vancouver Crime

- **Tableau Lessons**
 - multiple pills on a shelf, pill ordering
 - show filters
 - undo
 - duplicate & rename tabs

- **Big Ideas**
 - underlying causes can be tricky to understand

Demo 4: Back to the Future

- **Tableau Lessons**
 - simple analytics: totals
 - more disaggregation practice
 - Show Me

- **Big Ideas**
 - beyond simple bars
 - challenges of missing data

Assignment

- **Music Sales**
 - work through workbook on your own
 - submit finished version (in workbook .twbx format)

- **Vancouver Crime**
 - analyze further on your own
 - write up brief news story (submit in PDF format)
 - < 500 words
 - up to 2 screenshots from Tableau
 - write up reflections (submit in PDF format)
 - discuss dead ends
 - include Tableau screenshots

- submit before next class (Thu Tue Sep 20)
 - email tmm@cs.ubc.ca and caitlin@discoursemedia.org with subject JOURN Week 1
