Week 6: Rules of Thumb, Networks
Discussion: Bringing It All Together

Tamara Munzner
Department of Computer Science
University of British Columbia

• Rules of Thumb, Networks
• Discussion: Vis in the News – recent articles
• Break
• Evaluations – 1B be outside room
• Lab – Start on final assignment – I’ll circulate to answer questions about any/all past stuff
• consolidation, not new material

Now

Structure: Revised plan
• 85% Assignments (6 of them)
 – Lab 1: 15%
 – Lab 2: 15%
 – Lab 3: 10%
 – Lab 4: 10%
 – Lab 5: 10%
 – Lab 6: 25% (two weeks to complete)
• 15% Participation
 – The lowest of the first five lab marks will be dropped.

Rules of Thumb
• No unjustified 3D
 – Power of the plane
 – Disparity of depth
 – Occlusion hides information
 – Perspective distortion dangers
 – Tilted text isn’t legible
• No unjustified 2D
 – Eyes beat memory
 – Resolution over immersion
 – Overview first, zoom and filter, details on demand
 – Responsiveness is required
 – Function first, form next

No unjustified 3D: Power of the plane
• high-ranked spatial position – planar spatial position – not depth!
 (Magnitude-Channels/Ordered Attributes)
 Position on common scale
 Length (2D)/Width (3D)
 Area (2D)/Depth (3D position)

No unjustified 3D: Danger of depth
• we don’t really live in 3D: we see in 2.5D
 – acquire more info for depth slower, from head/body motion

No unjustified 3D: Tilted text isn’t legible
• text legibility – for worse when tilted from image plane

Occlusion hides information
• occlusion
• interaction complexity

Perspective distortion loses information
• perspective distortion – interferes with all size channel encodings – power of the plane is lost!

3D vs 2D bar charts
• 3D bars never a good idea!

No unjustified 3D example: Time-series data
• extruded curves: detailed comparisons impossible

No unjustified 3D example: Transform for new data abstraction
• derived data: cluster hierarchy
• juxtapose multiple views: calendar, superimposed 2D curves

No unjustified 3D: Shape perception
• benefits outweigh costs when task is shape perception for 3D spatial data
 – interaction navigation supports synthesis across many viewpoints

3D needs very careful justification for abstract data
– enthusiasm in 1990s, but now skepticism
– be especially careful with 3D for point clouds or networks

Eyes beat memory
• principle: external cognition vs. internal memory
 – easy to compare by moving eyes between side-by-side views
 – harder to compare visible item to memory of what you saw
• implications for animation
 – great for choreographed storytelling
 – great for transitions between two states
 – poor for many states with changes everywhere
 – consider small multiples instead

Constraints
• responsiveness is required
• less important for navigation

Resolution over immersion
• overview first, zoom and filter, details on demand

Responsiveness is required
• function first, form next

Interaction complexity
• consolidation, not new material

Performance
• speed: complex designs
• accuracy: complex designs

Responsiveness is required
• function first, form next

Occlusion hides information
• occlusion
• interaction complexity

3D needs very careful justification for abstract data
– enthusiasm in 1990s, but now skepticism
– be especially careful with 3D for point clouds or networks

Perspective distortion loses information
• perspective distortion
 – interferes with all size channel encodings
 – power of the plane is lost!

3D needs very careful justification for abstract data
– enthusiasm in 1990s, but now skepticism
– be especially careful with 3D for point clouds or networks

We can only see the outside shell of the world

[Cluster and Calendar based Visualization of Time Series Data. van Wijk and van Selow, Proc. InfoVis 99.]
Overview first, zoom and filter, details on demand
• influential mantra from Shneiderman
• overview = summary

Responsiveness is required
• three major categories
 – 0.1 seconds: perceptual processing
 – 1 second: immediate response
 – 10 seconds: brief tasks
• importance of visual feedback

Change blindness
• if attention is directed elsewhere, even drastic changes not noticeable
 – door experiment
• change blindness demos
 – mask in between images

Function first, form next
• start with focus on functionality
 – straightforward to improve aesthetics later on, as refinement
 – if no expertise in-house, find good graphic designer to work with
• dangerous to start with aesthetics
 – usually impossible to add function retroactively

Further reading
 – Chap 6: Rules of Thumb
 – Chap 12: We Have Time Requirements

Eyes beat memory example: Cerebral
• small multiples: one graph instance per experimental condition
 – same spatial layout
 – color differently by condition

Why not animation?
• disparate frames and regions: comparison difficult
 – as contiguous frames
 – as small region
 – as coherent motion of group
• safe special case
 – animated transitions

Resolution beats immersion
• immersion typically not helpful for abstract data
 – do not need sense of presence or stereoscopic 3D
• resolution much more important
 – pixels are the scarcest resource
 – desktop also better for workflow integration
• virtual reality for abstract data very difficult to justify

Idiom: sfdp (multi-level force-directed placement)
• data
 – original network
 – derived cluster hierarchy stop it
• considerations
 – better algorithm for some encoding technique
 – some fundamental use of space
 – hierarchy used for algorithm speedup but not shown explicitly
 – more on algorithm vs encoding in aftermath
• scalability
 – nodes, edges: 1K-10K
 – hard problem eventually hits

Idiom: adjacency matrix view
• data: network
 – transform into same data/encoding as heatmap
 – derived data: table from network
 – query attributes
 – weighted edge between nodes
 – 2 valued attributes: node list x 2
• visual encoding
 – cell shows presence/absence of edge
• scalability
 – 1K nodes, IM edges

Idiom: radial node-link tree
• data
 – tree
 – 1 quant attr as leaf nodes
• encoding
 – point node marks
 – radial axis orientation
 – angular proximity edges
 – distance from center: depth in tree
• tasks
 – understanding topology, following paths
• scalability
 – 1K-10K nodes

Idiom: treemap
• data
 – tree
• encoding
 – size encodes quant attr
• tasks
 – query attributes at leaf nodes
• scalability
 – IM leaf nodes

Arrange networks and trees
• visual encoding
 – link connection marks, node point marks
 – node size
 – textual
 – interactive, no trained reading
• tasks
 – explore topology, locate paths, clusters
 – scalability
 – node/edge density E = 4N

Connection vs. adjacency comparison
• adjacency matrix strengths
 – predictability, scalability supports reasoning
 – some topology tasks trainable
• node-link diagram strengths
 – topology understanding, path tracing
 – interactive, no training needed
• empirical study
 – node-link best for small networks
 – matrix best for large networks
 – if task doesn’t require topological structuring

[Shneiderman, Cerebral]
Tree drawing idioms comparison

• data shown
 – link relationships
 – tree depth
 – sibling order

• design choices
 – connection vs containment link marks
 – rectilinear vs radial layout
 – spatial position channels

• considerations
 – redundant? arbitrary?
 – information density?
 – avoid wasting space

Further reading
 – Chap 9: Arrange Networks and Trees

Further reading
 – http://www.thefunctionalart.com/
 – great blog
 – coming soon: The Truthful Art
 – great data journalism visualization resources

• Communicating Data with Tableau. Ben Jones. O’Reilly 2014
 – for more on Tableau
 – (also, LAVA Hackathon Oct 24-25

Discussion
• 156 families
 – analysis vs presentation

• chicken/coffee maps

• Canadian elections

• what else?

Lab/Assignment 6
• putting it all together
 – find or create a newsworthy dataset
 – don’t reuse one you used in a past lab
 – create Tableau visualization(s) visualizing it
 – at least one static
 – at least one linked/interactive
 – write up story suitable for public consumption, featuring your visualization at its heart
 – upload your viz to Tableau public so that you can embed the interactive material in your story
 – in separate document, write up design rationale and reflections
 – note that you have two weeks
 – due Tue Nov 3 9am

• Break

• Evals