Week 5: Manipulate, Facet, Reduce
Demo: Text

Tamara Munzner
Department of Computer Science
University of British Columbia

JRNL 520M, Special Topics in Contemporary Journalism: Visualization for Journalists
Week 5: 13 October 2015

http://www.cs.ubc.ca/~tmm/courses/journ15
Now

• Manipulate
• Facet (not covered last week)
• Reduce
• Demos/Videos
 – LineUp
 – LiveRAC
 – Cerebral
• Demos: Text
 – Overview
 – TimeLineCurator
Encode

- **Arrange**
 - Express
 - Separate
- **Order**
 - Align
- **Use**

Map
from categorical and ordered attributes

- **Color**
 - Hue
 - Saturation
 - Luminance
- **Size, Angle, Curvature, ...**
- **Shape**
 - □ □ □ □
- **Motion**
 - Direction, Rate, Frequency, ...

Manipulate

- **Change**

Facet

- **Juxtapose**

Reduce

- **Filter**
- **Aggregate**
- **Embed**
How to handle complexity: 3 more strategies + 1 previous

- **Manipulate**
 - Change
 - Select
 - Navigate

- **Facet**
 - Juxtapose
 - Partition
 - Superimpose

- **Reduce**
 - Filter
 - Aggregate
 - Embed

- **Derive**

- • change view over time
- • facet across multiple views
- • reduce items/attributes within single view
- • derive new data to show within view
How to handle complexity: 3 more strategies + 1 previous

Manipulate

- **Change**
 - ![Change Diagram]

- **Select**
 - ![Select Diagram]

- **Navigate**
 - ![Navigate Diagram]

Facet

- **Juxtapose**
 - ![Juxtapose Diagram]

- **Partition**
 - ![Partition Diagram]

- **Superimpose**
 - ![Superimpose Diagram]

Reduce

- **Filter**
 - ![Filter Diagram]

- **Aggregate**
 - ![Aggregate Diagram]

- **Embed**
 - ![Embed Diagram]

Derive

- ![Derive Diagram]

- **change over time**
 - most obvious & flexible of the 4 strategies
VAD Ch 11: Manipulate

- **Change over Time**

- **Navigate**
 - **Item Reduction**
 - **Zoom**
 - Geometric or Semantic
 - **Pan/Translate**
 - **Constrained**

- **Select**
Change over time

• change any of the other choices
 – encoding itself
 – parameters
 – arrange: rearrange, reorder
 – aggregation level, what is filtered...

 – interaction entails change
Idiom: Re-encode

System: Tableau

made using Tableau, http://tableausoftware.com
Idiom: **Reorder**

- data: tables with many attributes
- task: compare rankings

System: **LineUp**

Idiom: **Realign**

- stacked bars
 - easy to compare
 - first segment
 - total bar
- align to different segment
 - supports flexible comparison

System: **LineUp**

Idiom: Animated transitions

- smooth transition from one state to another
 - alternative to jump cuts
 - support for item tracking when amount of change is limited
- example: multilevel matrix views
 - scope of what is shown narrows down
 - middle block stretches to fill space, additional structure appears within
 - other blocks squish down to increasingly aggregated representations

Navigate: Changing item visibility

• change viewpoint
 – changes which items are visible within view
 – camera metaphor
 • zoom
 – geometric zoom: familiar semantics
 – semantic zoom: adapt object representation based on available pixels
 » dramatic change, or more subtle one
 • pan/translate
 • rotate
 – especially in 3D

– constrained navigation
 • often with animated transitions
 • often based on selection set
Idiom: **Semantic zooming**

- visual encoding change
 - colored box
 - sparkline
 - simple line chart
 - full chart: axes and tickmarks

System: LiveRAC

VAD Chap 11: Facet Into Multiple Views

- Juxtapose

- Partition

- Superimpose
How to handle complexity: 3 more strategies

Manipulate

- Change
- Select
- Navigate

Facet

- Juxtapose
- Partition
- Superimpose

Reduce

- Filter
- Aggregate
- Embed

Derive

- facet data across multiple views
Facet

- **Juxtapose**
 - ![Juxtapose Diagram]

- **Partition**
 - ![Partition Diagram]

- **Superimpose**
 - ![Superimpose Diagram]

Coordinate Multiple Side By Side Views

- **Share Encoding: Same/Different**
 - ![Share Encoding Diagram]

- **Share Data: All/Subset/None**
 - ![Share Data Diagram]

- **Share Navigation**
 - ![Share Navigation Diagram]
Idiom: **Linked highlighting**

- see how regions contiguous in one view are distributed within another
 - powerful and pervasive interaction idiom

- encoding: different
 - **multiform**

- data: all shared

Idiom: bird’s-eye maps

- encoding: same
- data: subset shared
- navigation: shared
 - bidirectional linking

- differences
 - viewpoint
 - (size)

- overview-detail

System: Google Maps

Idiom: **Small multiples**

- **encoding:** same
- **data:** none shared
 - different attributes for node colors
 - (same network layout)
- **navigation:** shared

[**System: Cerebral**](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2579090/)

Coordinate views: Design choice interaction

<table>
<thead>
<tr>
<th></th>
<th>Data</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
<td>Subset</td>
<td>None</td>
</tr>
<tr>
<td>Encoding</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Same</td>
<td>Redundant</td>
<td>Overview/Detail</td>
<td>Small Multiples</td>
</tr>
<tr>
<td>Different</td>
<td>Multiform</td>
<td>Multiform, Overview/Detail</td>
<td>No Linkage</td>
</tr>
</tbody>
</table>

• why juxtapose views?
 – benefits: eyes vs memory
 • lower cognitive load to move eyes between 2 views than remembering previous state with single changing view
 – costs: display area, 2 views side by side each have only half the area of one view
Partition into views

• how to divide data between views
 – encodes association between items using spatial proximity
 – major implications for what patterns are visible
 – split according to attributes

• design choices
 – how many splits
 • all the way down: one mark per region?
 • stop earlier, for more complex structure within region?
 – order in which attribs used to split
 – how many views
Partitioning: List alignment

• single bar chart with grouped bars
 – split by state into regions
 • complex glyph within each region showing all ages
 – compare: easy within state, hard across ages

• small-multiple bar charts
 – split by age into regions
 • one chart per region
 – compare: easy within age, harder across states
Partitioning: Recursive subdivision

- split by neighborhood
- then by type
- then time
 - years as rows
 - months as columns
- color by price

- neighborhood patterns
 - where it’s expensive
 - where you pay much more for detached type

System: HIVE

Partitioning: Recursive subdivision

• switch order of splits
 – type then neighborhood

• switch color
 – by price variation

• type patterns
 – within specific type, which neighborhoods inconsistent

Partitioning: Recursive subdivision

- different encoding for second-level regions
 - choropleth maps

Superimpose layers

• **layer**: set of objects spread out over region
 – each set is visually distinguishable group
 – extent: whole view

• design choices
 – how many layers?
 – how are layers distinguished?
 – small static set or dynamic from many possible?
 – how partitioned?
 • heavyweight with attribs vs lightweight with selection

• distinguishable layers
 – encode with different, nonoverlapping channels
 • two layers achieveable, three with careful design
Static visual layering

- foreground layer: roads
 - hue, size distinguishing main from minor
 - high luminance contrast from background
- background layer: regions
 - desaturated colors for water, parks, land areas
- user can selectively focus attention
- “get it right in black and white”
 - check luminance contrast with greyscale view

Superimposing limits

• few layers, but many lines
 – up to a few dozen
 – but not hundreds

• superimpose vs juxtapose: empirical study
 – superimposed for local visual, multiple for global
 – same screen space for all multiples, single superimposed
 – tasks
 • local: maximum, global: slope, discrimination

Dynamic visual layering

- interactive, from selection
 - lightweight: click
 - very lightweight: hover

- ex: 1-hop neighbors

Reduce items and attributes

- reduce/increase: inverses
- filter
 - pro: straightforward and intuitive
 - to understand and compute
 - con: out of sight, out of mind
- aggregation
 - pro: inform about whole set
 - con: difficult to avoid losing signal
- not mutually exclusive
 - combine filter, aggregate
 - combine reduce, change, facet

Reducing Items and Attributes

- Filter
 - Items
 - Attributes
- Aggregate
 - Items
 - Attributes
- Embed
Idiom: **dynamic filtering**

- item filtering
- browse through tightly coupled interaction
 - alternative to queries that might return far too many or too few

Idiom: **histogram**

- static item aggregation
- task: find distribution
- data: table
- derived data
 - new table: keys are bins, values are counts
- bin size crucial
 - pattern can change dramatically depending on discretization
 - opportunity for interaction: control bin size on the fly
Continuous scatterplot

- static item aggregation
- data: table
- derived data: table
 - key attribs x,y for pixels
 - quant attrib: overplot density
- dense space-filling 2D matrix
- color: sequential
categorical hue + ordered luminance colormap

Idiom: boxplot

- static item aggregation
- task: find distribution
- data: table
- derived data
 - 5 quant attribs
 - median: central line
 - lower and upper quartile: boxes
 - lower upper fences: whiskers
 - values beyond which items are outliers
 - outliers beyond fence cutoffs explicitly shown

[40 years of boxplots. Wickham and Stryjewski. 2012. had.co.nz]
Idiom: **Hierarchical parallel coordinates**

- dynamic item aggregation
- derived data: *hierarchical clustering*
- encoding:
 - cluster band with variable transparency, line at mean, width by min/max values
 - color by proximity in hierarchy

Spatial aggregation

- MAUP: Modifiable Areal Unit Problem
 - gerrymandering (manipulating voting district boundaries) is one example!

[http://www.e-education.psu.edu/geog486/l4_p7.html, Fig 4.cg.6]
Dimensionality reduction

• attribute aggregation
 – derive low-dimensional target space from high-dimensional measured space
 – use when you can’t directly measure what you care about
 • true dimensionality of dataset conjectured to be smaller than dimensionality of measurements
 • latent factors, hidden variables

Tumor Measurement Data ➔ DR ➔ Benign

data: 9D measured space

derived data: 2D target space
Dimensionality reduction for documents

Task 1
In HD data → Out 2D data

What? In High-dimensional data
Why? Produce Derive

Task 2
In 2D data → Out Scatterplot Clusters & points

What? In 2D data
Why? Discover Explore
How? Encode Navigate Identify Select

Task 3
In Scatterplot Clusters & points → Out Labels for clusters

What? In Scatterplot Clusters & points
Why? Produce Annotate

• bag of words model for text document
Overview origin story: WikiLeaks meets Glimmer

• WikiLeaks: hacker-journalist Jonathan Stray analyzing Iraq warlogs
 – conjecture that existing label classification falls short of showing all meaningful structure in data
 • friendly action, criminal incident, ...
 – had some NLP, needed better vis tools

• Glimmer: multilevel dimensionality reduction algorithm
 – scalability to 30K documents and terms

Overview design evolution

• how to find the needle in the haystack?
• how to convince that the haystack has no needles?
What/Why/How interplay

- why: understand clusters
- what: derive data of full cluster hierarchy
 - explore space of possible clusterings
- how: show cluster hierarchy
 - arrange space: node-link
- how: support tagging clusters/docs
 - following or cross-cutting hierarchy!
 - simple annotation
 - progress tracking
 - user-defined semantics

Dataset Types

- Networks
- Trees

Targets

- Network Data
 - Topology
 - Paths

Produce

Annotate

Arrange Networks And Trees
How: Idiom design decisions

- facet: juxtapose linked views
 - linked color coding
 - cluster hierarchy tree
 - DR scatterplot
 - tags
 - reading text/keywords
 - cluster list
 - doc reader

- Juxtapose and Coordinate Views
 - Share Encoding: Same/Different
 - Share Data: All/Subset/None
 - Linked Highlighting

Why?

What?

• facet: juxtapose linked views
 - linked color coding
 • cluster hierarchy tree
 • DR scatterplot
 • tags
 - reading text/keywords
 • cluster list
 • doc reader

Identity Channels: Categorical Attributes

- Spatial region
- Color hue
- Motion
- Shape
Overview video (version 1)

http://www.cs.ubc.ca/labs/imager/tr/2012/modiscotag/
Overview video v4

- versions 3 and 4
 - no DR scatterplot
 - tree arrangement emphasizing nodes not links
 - combined doc/cluster viewer

http://vimeo.com/71483614
Why: Task abstractions

• what’s in this collection? (of leaked docs)
 – generate hypothesis
 – summarize clusters
 – explore clusters

• locate evidence (within FOIA dump)
 – verify hypothesis
 – identify clusters/documents
 – locate clusters/documents

• prove non-existence of evidence
 – even harder!
 – exhaustive reading vs filtering out irrelevant

http://www.cs.ubc.ca/labs/imager/tr/2014/Overview/
Further reading

 – Chap 11: Manipulate View
 – Chap 12: Facet Across Multiple Views
 – Chap 13: Reduce Items and Attributes
Lab/Assignment 5

• Use TimeLineCurator to create visual timelines from free-form text
 – work through BC History example
 – find 1 article where temporal story is worth telling, and curate it for TimelineJS export
 ● including media/images is optional
 – find 2 articles that make sense to compare with each other in a mashup
 ● curate a combined timeline for TLC export
 – find 1 article where there’s nothing interesting to see
 ● document that it’s uninteresting with screenshot of TLC’s initial screen