Week 4: Facet

Tamara Munzner
Department of Computer Science
University of British Columbia

JRNL 520M, Special Topics in Contemporary Journalism: Visualization for Journalists
Week 4: 6 October 2015

http://www.cs.ubc.ca/~tmm/courses/journ15
Now

• Finish up color theory + demos (30-45 min)
• break (15 min)
• Recreating News in Tableau (60+ min)
 – working through together in lab mode, not fast in demo mode
• Facet lecture, if there’s enough time
Lab/Assignment 4

• Work through Recreating News Visualizations in Tableau
• Create Drought Footprints yearly and monthly versions
• Fix two previous obstacles from previous labs (but not a duplicate of color for this week)
• submit next week
 – by 9am Tue, email tmm@cs.ubc.ca with subject JOURN Week 4
VAD Chap 11: Facet Into Multiple Views

- **Juxtapose**

 ![Juxtapose Diagram]

- **Partition**

 ![Partition Diagram]

- **Superimpose**

 ![Superimpose Diagram]
How?

Encode

Arrange
- Express
- Separate

Order
- Align

Use

Map from categorical and ordered attributes
- Color
 - Hue
 - Saturation
 - Luminance
- Size, Angle, Curvature, ...

Shape
-+
- ●
- □
- ▲

Motion
Direction, Rate, Frequency, ...

Manipulate
- Change
- Select
- Navigate

Facet
- Juxtapose
- Partition
- Superimpose

Reduce
- Filter
- Aggregate
- Embed

What?

Why?

How?
How to handle complexity: 3 more strategies

- **Manipulate**
 - Change
 - Select
 - Navigate

- **Facet**
 - Juxtapose
 - Partition
 - Superimpose

- **Reduce**
 - Filter
 - Aggregate
 - Embed

Derive

- change view over time
- facet across multiple views
- reduce items/attributes within single view
- derive new data to show within view
How to handle complexity: 3 more strategies

Manipulate

- **Change**

Facet

- **Juxtapose**

Reduce

- **Filter**

Derive

- **Embed**

- **Aggregate**

- **Partition**

- **Superimpose**

• change over time
 - most obvious & flexible of the 4 strategies

+ 1 previous
Idiom: **Animated transitions**

- smooth transition from one state to another
 - alternative to jump cuts
 - support for item tracking when amount of change is limited

- example: multilevel matrix views
 - scope of what is shown narrows down
 - middle block stretches to fill space, additional structure appears within
 - other blocks squish down to increasingly aggregated representations

How to handle complexity: 3 more strategies

- **Manipulate**
 - Change
 - Select
 - Navigate

- **Facet**
 - Juxtapose
 - Partition
 - Superimpose

- **Reduce**
 - Filter
 - Aggregate
 - Embed

- **Derive**

- facet data across multiple views
Facet

- **Juxtapose**

- **Partition**

- **Superimpose**

- **Coordinate Multiple Side By Side Views**
 - Share Encoding: Same/Different
 - Linked Highlighting
 - Share Data: All/Subset/None
 - Share Navigation
Idiom: **Linked highlighting**

- see how regions contiguous in one view are distributed within another
 - powerful and pervasive interaction idiom

- encoding: different
 - **multiform**

- data: all shared

Idiom: **bird’s-eye maps**

- **encoding**: same
- **data**: subset shared
- **navigation**: shared
 - bidirectional linking

differences
- viewpoint
- (size)

overview-detail

Idiom: **Small multiples**

- **encoding:** same
- **data:** none shared
 - different attributes for node colors
 - (same network layout)
- **navigation:** shared

[Systems: Cerebral]

Coordinate views: Design choice interaction

<table>
<thead>
<tr>
<th>Encoding</th>
<th>Data</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
<td>Subset</td>
<td>None</td>
</tr>
<tr>
<td>Same</td>
<td>Redundant</td>
<td>Overview/Detail</td>
<td>Small Multiples</td>
</tr>
<tr>
<td>Different</td>
<td>Multiform</td>
<td>Multiform, Overview/Detail</td>
<td>No Linkage</td>
</tr>
</tbody>
</table>

why juxtapose views?

- **benefits: eyes vs memory**
 - lower cognitive load to move eyes between 2 views than remembering previous state with single changing view

- **costs: display area, 2 views side by side each have only half the area of one view**
Partition into views

• how to divide data between views
 – encodes association between items using spatial proximity
 – major implications for what patterns are visible
 – split according to attributes

• design choices
 – how many splits
 • all the way down: one mark per region?
 • stop earlier, for more complex structure within region?
 – order in which attribs used to split
 – how many views
Partitioning: List alignment

• single bar chart with grouped bars
 – split by state into regions
 • complex glyph within each region showing all ages
 – compare: easy within state, hard across ages

• small-multiple bar charts
 – split by age into regions
 • one chart per region
 – compare: easy within age, harder across states
Partitioning: Recursive subdivision

- split by neighborhood
- then by type
- then time
 - years as rows
 - months as columns
- color by price

- neighborhood patterns
 - where it’s expensive
 - where you pay much more for detached type

System: HIVE

Partitioning: Recursive subdivision

- switch order of splits
 - type then neighborhood

- switch color
 - by price variation

- type patterns
 - within specific type, which neighborhoods inconsistent

System: HIVE

Partitioning: Recursive subdivision

- different encoding for second-level regions
 - choropleth maps

System: HIVE

Superimpose layers

- **layer**: set of objects spread out over region
 - each set is visually distinguishable group
 - extent: whole view

- **design choices**
 - how many layers?
 - how are layers distinguished?
 - small static set or dynamic from many possible?
 - how partitioned?
 - heavyweight with attribs vs lightweight with selection

- **distinguishable layers**
 - encode with different, nonoverlapping channels
 - two layers achievable, three with careful design
Static visual layering

• foreground layer: roads
 – hue, size distinguishing main from minor
 – high luminance contrast from background

• background layer: regions
 – desaturated colors for water, parks, land areas

• user can selectively focus attention

• “get it right in black and white”
 – check luminance contrast with greyscale view

Superimposing limits

• few layers, but many lines
 – up to a few dozen
 – but not hundreds

• superimpose vs juxtapose: empirical study
 – superimposed for local visual, multiple for global
 – same screen space for all multiples, single superimposed
 – tasks
 • local: maximum, global: slope, discrimination

Dynamic visual layering

- interactive, from selection
 - lightweight: click
 - very lightweight: hover

- ex: 1-hop neighbors

Further reading

 – Chap 11: Facet Into Multiple Views