Visual encoding and interaction idiom: How

Actions: Encode

Encode

• key
 – independent attribute
 – used as unique index to look up items
• value
 – dependent attribute, value of cell
• classify arrangements by key count
 – 0, 1, 2, many...

Encode tables: Arrange space

• Attributes (columns)
• Items (rows)
• Cell containing value

Networks

Value in cell

Dataset Types

Geometry (Spatial)

Position

Spatial

SPATIAL DATA

Spatial Data Abstraction

3

Tables

Attributes (columns)

Items (rows)

Cell containing value

Networks

Link

Node (item)

Trees

Multidimensional Table

Value in cell

Dataset Types

Geometry (Spatial)

Position

Spatial

SPATIAL DATA

Spatial Data Abstraction

3

Tables

Attributes (columns)

Items (rows)

Cell containing value

Networks

Link

Node (item)

Trees

Multidimensional Table

Value in cell

Dataset Types

Geometry (Spatial)

Position

Spatial

SPATIAL DATA

Spatial Data Abstraction

3

Tables

Attributes (columns)

Items (rows)

Cell containing value

Networks

Link

Node (item)

Trees

Multidimensional Table

Value in cell

Dataset Types

Geometry (Spatial)

Position

Spatial

SPATIAL DATA

Spatial Data Abstraction

3

Tables

Attributes (columns)

Items (rows)

Cell containing value

Networks

Link

Node (item)

Trees

Multidimensional Table

Value in cell

Dataset Types

Geometry (Spatial)

Position

Spatial

SPATIAL DATA

Spatial Data Abstraction

3

Tables

Attributes (columns)

Items (rows)

Cell containing value

Networks

Link

Node (item)

Trees

Multidimensional Table

Value in cell

Dataset Types

Geometry (Spatial)

Position

Spatial

SPATIAL DATA

Spatial Data Abstraction

3

Tables

Attributes (columns)

Items (rows)

Cell containing value

Networks

Link

Node (item)

Trees

Multidimensional Table

Value in cell

Dataset Types

Geometry (Spatial)

Position

Spatial

SPATIAL DATA

Spatial Data Abstraction

3

Tables

Attributes (columns)

Items (rows)

Cell containing value

Networks

Link

Node (item)

Trees

Multidimensional Table

Value in cell

Dataset Types

Geometry (Spatial)

Position

Spatial

SPATIAL DATA

Spatial Data Abstraction

3

Tables

Attributes (columns)

Items (rows)

Cell containing value

Networks

Link

Node (item)

Trees

Multidimensional Table

Value in cell

Dataset Types

Geometry (Spatial)

Position

Spatial

SPATIAL DATA

Spatial Data Abstraction

3

Tables
Idioms: radial bar chart, star plot

- **radial bar chart**
 - radial axes meet at central ring, line mark

- **star plot**
 - radial axes, meet at central point, line mark

- **bar chart**
 - rectangular axes, aligned vertically

- **accuracy**
 - length unaligned with radial
 - less accurate than aligned with radial

Idioms: line chart

- **one key, one value**
 - data
 - 2 quant attributes

- **two keys, one value**
 - line connection, marks between them

- **channels**
 - aligned lengths to express quant value

- **task**
 - find trends

Idioms: cluster heatmap

- **in addition**
 - derived data
 - 2 cluster hierarchies

- **dendrogram**
 - parent-child relationships in tree with connection lines marks

- **matrix**
 - rows assigned to interior branch heights easy to compare

- **heatmap**
 - marks (re)ordered by cluster hierarchy traversal

Idioms: scatterplot matrix, parallel coordinates

- **scatterplot matrix (SPLOM)**
 - rectilinear axes, point mark
 - all possible pairs of axes
 - scalable
d

- **parallel coordinates**
 - parallel axes, jagged line representing item

- **axis order is major change**

Idioms: pie chart, polar area chart

- **pie chart**
 - angles marks with angle channel

- **polar area chart**
 - area marks with length channel

Idioms: normalized stacked bar chart

- **task**
 - part-to-whole judgements

- **normalized stacked bar chart**
 - stacked bar chart, normalized to full width

Idioms: glyphmaps

- **rectilinear good for linear vs nonlinear trends**

- **radial good for cyclic patterns**
Orientation limitations:
- rectilinear: scalability wrt #axes
 - 2 axes best
 - 3 problematic
 - more in afternoon
 - 4+ impossible
- parallel: unfamiliarity, training time
- radial: perceptual limits
 - asymmetry: angles lower precision than lengths
 - sometimes can be exploited

Further reading:
 - Chap 2: Data Abstraction
 - Chap 3: Task Abstraction
 - Chap 7: Tables
 http://www.datavis.ca/milestones

Lab/Assignment 2:
- two main datasets
 - development aid from Guardian Datablog
 - your choice from small set
- focus on tasks and spatial layout as discussed in class for your exploration, story discovery, and writeup
 - provide rationale justifying your design decisions
- submit next week
 - by 9am Tue, email tmm@cs.ubc.ca with subject JOURN Week 2