News
- LAVA Hackathon Oct 24-25
 - http://blogs.ubc.ca/lava/
 - Learning Analytics, Visual Analytics
- there are no lectures in this class that week
 - *If you want to avoid withdrawal!* :-)

VAD Ch 4: Analysis: Four Levels for Validation

- four levels of design problems
 - different threats to validity at each level

Four Levels of Design and Validation

- declarative: what
 - Protovis, D3, ggplot2
 - separation of specification from execution
- considering
 - expressiveness
 - ease/hard of evaluation
 - accessibility
- do I know how?

Protovis

- declarative infovis toolkit, in Javascript
- fine-grained building blocks for tailored visualizations
- pros
 - heavily used (previously)
 - very powerful abstractions
 - quickly implement most techniques covered so far
- costs
 - hasn’t been under active development for:
 - non-trivial learning curve
 - accessibility

Example app: NapkinVis (2009 course project)

Chao. NapkinVis. http://www.cs.ubc.ca/~tmm/courses/533-09/projects.html#will

Protovis Validation

- wide set of old/new app examples
 - expressive, effectiveness, scalability
 - accessibility
- analysis with cognitive dimensions of notation
 - closure of mapping, hidden dependencies
 - role-expressiveness, visibility, consistency
 - viscosity, abstraction
- hard mental operations

Declarative toolkits

- imperative toolkits/libraries
 - say exactly how to do it
 - familiar programming model
- OpenGL, prefuse, ...
- declarative: other possibility
 - just say what to do
 - Protovis, D3

OpenGl

- graphics library
 - pros
 - power and flexibility, complete control for graphics
 - software acceleration
 - many language bindings: C/C++, Java (w/DOM)
 - cons
 - big learning curve if you don’t know already
 - no vis support, must roll your own everything
 - example app: TreeJuxtaposer

InfoVis Reference Model

- conceptual model underneath design of prefuse and many other toolkits
- heavily influenced much of infovis (including nested model)
- also infovis pipeline, data state model

InfoVis

- data: tables, networks
- visual form: layout, color, size, ...
 - close to alchimist

Protovis

- declarative infovis toolkit, in Javascript
 - also later Java version
 - marks with inherited properties
 - pros
 - runs in browser
 - matches marks/shadow mental model
 - also much more interaction, geospatial trees, ...
 - cons
 - not all kinds of operations supported
 - example app: NapkinVis (2009 course project)

Fig 1, 3. Chao. NapkinVis. http://www.cs.ubc.ca/~tmm/courses/533-09/projects.html#will

Paper: D3

- paper types
 - design studies
 - technique/algorithm
 - evaluation
 - model/taxonomy
 - system
- today’s emphasis

Camera-ready Edits (2014)

Prefuse

- separation: abstract data, visual form, view
 - data tables, networks
 - visual form, layout, color, size, ...
 - view: multiple renderers

Processing

- layer on top of Java/OpenGL
- visualization esp. for artists/designers
- pros
 - huge sandbox for rapid prototyping
- cons
 - poor library support

Directionality

- problem-driven task
- data/task abstraction
- Visual encoding/interaction idiom
- Algorithm

Domain situation

- Technical situation

Nested Levels of Design and Validation

- four levels of design problems
 - different threats to validity at each level

News
- LAVA Hackathon Oct 24-25
 - http://blogs.ubc.ca/lava/
 - Learning Analytics, Visual Analytics
- there are no lectures in this class that week
 - *If you want to avoid withdrawal!* :-)

VAD Ch 4: Analysis: Four Levels for Validation

- four levels of design problems
 - different threats to validity at each level

Protovis Validation

- wide set of old/new app examples
 - expressive, effectiveness, scalability
 - accessibility
- analysis with cognitive dimensions of notation
 - closure of mapping, hidden dependencies
 - role-expressiveness, visibility, consistency
 - viscosity, abstraction
- hard mental operations

Protovis

- declarative infovis toolkit, in Javascript
 - also later Java version
 - marks with inherited properties
 - pros
 - runs in browser
 - matches marks/shadow mental model
 - also much more interaction, geospatial trees, ...
 - cons
 - not all kinds of operations supported
 - example app: NapkinVis (2009 course project)
D3: Data-Driven Documents

D3: Objectives
- Compatibility
- Debugging
- Performance

D3: Related Work Typology
- Document Transformers
- Graphics Libraries
- Infovis Systems

D3 Features
- Document Transformation as Atomic Operation
 - Scene changes vs representation of scenes themselves
- Immediate Property Evaluation Semantics
 - Avoid confusing consequences of delayed evaluation
- Validation
 - Page loads, frame rate
 - Accessibility
 - Performance benchmarks

D3: Now
- Guest lectures on tools & resources
 - Matt Brehmer
 - http://www.cs.ubc.ca/group/infovis/resources.shtml

D3: Next Time
- To Read
 - VAD Ch. 7: Tables
 - Paper type: survey

D3: Pros
- Seamless interoperability with Web
- Explicit transforms of scene with dependency info
- Massive user community, many third-party apps/libraries on top of it, lots of docs

D3: Cons
- Even more different from traditional programming model
- Example apps: many

D3: Query-Driven Selection
- Selection: filtered set of elements queries from the current doc
- Also partitioning/grouping!
- Operators act on selections to modify content
- Instantaneous or via animated transitions with attribute/style interpolators
- Event handlers for interaction}

D3: Data Binding to Scenegraph Elements
- Dynamic data from input data
 - Enter, update, exit subselections
 - Sticky: available for subsequent re-selection
 - Sort, filter

D3: Document Transformation as Atomic Operation
- Selection: filtered set of elements queries from the current doc
- Scene changes vs representation of scenes themselves
- Immediate property evaluation semantics
 - Avoid confusing consequences of delayed evaluation
- Validation
 - Page loads, frame rate
 - Accessibility
 - Performance benchmarks

D3: Next Time
- To Read
 - VAD Ch. 7: Tables
 - Paper type: survey

D3: Now
- Guest lectures on tools & resources
 - Matt Brehmer
 - http://www.cs.ubc.ca/group/infovis/resources.shtml