Ch 3: Task Abstraction
Paper: Design Study Methodology

Tamara Munzner
Department of Computer Science
University of British Columbia

CPSC 547, Information Visualization
Day 4: 22 September 2015

http://www.cs.ubc.ca/~tmm/courses/547-15
News

• headcount update: 29 registered; 24 Q2, 22 Q3
 – signup sheet: anyone here for the first time?
• marks for day 2 and day 3 questions/comments sent out by email
 – see me after class if you didn’t get them
 – order of marks matches order of questions in email
 • Q2: avg 83.9, min 26, max 98
 • Q3: avg 84.3, min 22, max 98
 – if you spot typo in book, let me know if it’s not already in errata list
 • but don’t count it as a question
 • not useful to tell me about typos in published papers
• three questions total required
 • not three questions per reading (6 total)! not just one!
VAD Ch 3: Task Abstraction

Why?

Actions

- Analyze
 - Consume
 - Discover
 - Present
 - Enjoy
 - Produce
 - Annotate
 - Record
 - Derive

Search

<table>
<thead>
<tr>
<th>Target known</th>
<th>Target unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location known</td>
<td>Location unknown</td>
</tr>
<tr>
<td>····</td>
<td>Location unknown</td>
</tr>
<tr>
<td>····</td>
<td>Location unknown</td>
</tr>
</tbody>
</table>

Query

- Identify
- Compare
- Summarize

Targets

- All Data
 - Trends
 - Outliers
 - Features

- Attributes
 - One
 - Distribution
 - Extremes
 - Many
 - Dependency
 - Correlation
 - Similarity

- Network Data
 - Topology
 - Paths
 - Spatial Data
 - Shape

[Fig 3.1]
High-level actions: Analyze

• consume
 – discover vs present
 • classic split
 • aka explore vs explain
 – enjoy
 • newcomer
 • aka casual, social

• produce
 – annotate, record
 – derive
 • crucial design choice
Derive

• don’t just draw what you’re given!
 – decide what the right thing to show is
 – create it with a series of transformations from the original dataset
 – draw that

• one of the four major strategies for handling complexity

```
trade balance = exports - imports
```
Actions: Mid-level search, low-level query

• what does user know?
 – target, location

• how much of the data matters?
 – one, some, all

<table>
<thead>
<tr>
<th></th>
<th>Target known</th>
<th>Target unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location known</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location unknown</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Search

Query

Identify

Compare

Summarize
Why: Targets

- **ALL DATA**
 - Trends
 - Outliers
 - Features

- **ATTRIBUTES**
 - One
 - Distribution
 - Extremes
 - Many
 - Dependency
 - Correlation
 - Similarity

- **NETWORK DATA**
 - Topology
 - Paths

- **SPATIAL DATA**
 - Shape
Analysis example: Compare idioms

SpaceTree

TreeJuxtaposer

What?

Why?

How?

Tree

Actions
- Present
- Locate
- Identify

Targets
- Path between two nodes

SpaceTree

Encode
- Navigate
- Select
- Filter
- Aggregate

TreeJuxtaposer

Encode
- Navigate
- Select
- Arrange
Analysis example: Derive one attribute

- **Strahler number**
 - centrality metric for trees/networks
 - derived quantitative attribute
 - draw top 5K of 500K for good skeleton

Chained sequences

- output of one is input to next
 - express dependencies
 - separate means from ends
Design Study Methodology

Reflections from the Trenches and from the Stacks

joint work with:
Michael Sedlmair, Miriah Meyer

http://www.cs.ubc.ca/labs/imager/tr/2012/dsm/
Design Studies: Lessons learned after 21 of them

- Cerebral genomics
- MizBee genomics
- Pathline genomics
- MulteeSum genomics
- Vismon fisheries management
- QuestVis sustainability
- WiKeVis in-car networks
- MostVis in-car networks
- Car-X-Ray in-car networks
- ProgSpy2010 in-car networks
- RelEx in-car networks
- Cardiogram in-car networks
- AutobahnVis in-car networks
- VisTra in-car networks
- Constellation linguistics
- LibVis cultural heritage
- Caidants multicast
- SessionViewer web log analysis
- LiveRAC server hosting
- PowerSetViewer data mining
- LastHistory music listening
Methodology for Problem-Driven Work

• definitions

• 9-stage framework

• 32 pitfalls and how to avoid them
Methodology

ingredients

Methods

recipes

Methodology
Design studies: problem-driven vis research

• a specific real-world problem
 – real users and real data,
 – collaboration is (often) fundamental

• design a visualization system
 – implications: requirements, multiple ideas

• validate the design
 – at appropriate levels

• reflect about lessons learned
 – transferable research: improve design guidelines for vis in general
 • confirm, refine, reject, propose
When To Do Design Studies

- **Task Clarity**
 - Fuzzy
 - Crisp

- **Information Location**
 - Head
 - Computer

- **Design Study Methodology**
 - Suitable
 - Not Enough Data

- **Algorithm Automation Possible**
Nine-Stage Framework

PRECONDITION
personal validation

CORE
inward-facing validation

ANALYSIS
outward-facing validation

- learn
- winnow
- cast
- discover
- design
- implement
- deploy
- reflect
- write
How To Do Design Studies

• definitions

• 9-stage framework

• 32 pitfalls and how to avoid them
Pitfall Example: Premature Publishing

algorithm innovation

design studies

Must be first!

Am I ready?

http://www.alaineknipes.com/interests/violin_concert.jpg
Further reading: Books

 – Chap 3: Task Abstraction

• Information Visualization: Using Vision to Think. Stuart Card, Jock Mackinlay, and Ben Shneiderman.
 – Chap 1
Further reading: Articles

• What does the user want to see?: what do the data want to be? A. Johannes Pretorius and Jarke J. van Wijk. Information Visualization 8(3):153-166, 2009.

• TreeJuxtaposer: Scalable Tree Comparison using Focus+Context with Guaranteed Visibility Tamara Munzner, Francois Guimbretiere, Serdar Tasiran, Li Zhang, and Yunhong Zhou. SIGGRAPH 2003.

Further reading: Design studies

Next Time

- to read
 - VAD Ch. 6: Rules of Thumb
 - paper type: evaluation

- reminder: my office hours are Tue right after class