Ch 7+8: Tables, Spatial Data

Tamara Munzner
Department of Computer Science
University of British Columbia
CPSC 547, Information Visualization
Day 8: 6 October 2015

Keys and values
- key: independent attribute
 - used as unique index to look up items
 - simple tables: 1 key
- multiple tables: multiple keys
- value: dependent attribute, value of cell
- classify attributes by key count:
 - 0, 1, 2, many...

Idiom: table
- express values
 - tabular form
 - marks: lines
 - aligned horizontally, separated vertically
 - indexes by 2 categorical attributes

Idiom: heatmap
- for visualization
 - map items
 - high/low values
- marks: color
 - scales
 - colorbars
- alignment
 - ascending/descending

Idiom: scatterplot
- general visualization
 - relationships
 - data points
 - mark shapes
 - aligned horizontally

Idiom: stacked bar chart
- general visualization
 - multiple data series
 - bars: heights
 - width: independent

Idiom: streamgraph
- general visualization
 - continuous data
 - aligned horizontally
 - trends
 - alignment

Idiom: line chart
- general visualization
 - x, y: axes
 - trends
 - discrete data

Idiom: cluster heatmap
- general visualization
 - x, y: axes
 - clusters
 - dendrogram

Idiom: bar chart
- general visualization
 - x-axis: categories
 - y-axis: values
 - marks: bars
 - alignment

Idiom: scatterplot matrix, parallel coordinates
- general visualization
 - x, y: axes
 - trends
 - alignment

Choosing bar vs line charts
- depends on type of key attrib
 - bar charts if categorical
 - line charts if ordered

News
- clarification on artery vis
- diverging colormap since doctors care about high and low values
- not much about the axes in the middle
- personal communication with Birkin, not clearly stated in paper
- second guest lecture today from Kosara
- will be presentation (versus discovery/exploration)
- then continue with lecture/discussion
- catch up on chapers, leave papers for Thu
- remember
- I have office hours on Tuesdays
- pitches are coming up Thu Oct 22
- start talking to me about project ideas!
Task: Correlation

Idioms: radial bar chart, star plot

- scatterplot matrix
- positive correlation
- diagonal/low-to-high
- negative correlation
diaogonal/high-to-low
- uncorrelated
- parallel coordinates
- derived data (from field)
- 3D vector field
- line chart
- isoline geometry
- Saddle Point:
 - characterized according to sides
 - two critical values
 - sometimes underlaid
 - uncorrelated
- visualization
- task: part-to-whole judgements

Idioms: pie chart, polar area chart

- derived data (from field)
- bar chart
- radial axes meet at central point, line mark
- bar chart
- rectilinear axes, aligned vertically
- accuracy
- length unaligned with radial
- less accurate than aligned with rectilinear

Idioms: normalized stacked bar chart

- task
- derived data (from field)
- rectilinear axes, aligned vertically
- accuracy
- length unaligned with radial
- less accurate than aligned with rectilinear

Further reading

- Arbor Avis: 1999

Arrang spatial data

- Up-Given
 - Geometry
 - Spatial Fields
 - Scalar Fields (one value per cell)
 - Isoline Geometry
 - Vector Field Rendering
 - Direct Isoline Rendering
 - Vector and Tensor Fields (vector values per cell)
 - Flow Graphics
 - Streamlines (area traced)
 - Texture (clarion seeds)
 - Features (globally derived)

Idioms: DVR, multidimensional transfer functions

- direct volume rendering
 - transfer function maps scalar values to color, opacity
 - derived data
 - isosurface geometry
 - isosurface (isovalues for specific scalar values)

Further reading

- Arbor Avis: 1999

Idioms: glyphmaps

- rectilinear good for linear vs nonlinear trends
- radial good for cyclic patterns
- use given spatial data
- when central task is understanding spatial relationships
- data:
 - geographic geometry
 - scalar spatial field
- derived data:
 - contour map
 - isoline geometry
- sequential segmented colormap
- isosurface geometry
- isovalues for specific scalar values
- task:
 - spatial relationships

Idioms: choropleth map

- use given spatial data
- geographic geometry
- scalar spatial field
- derived data:
 - contour map
 - isoline geometry
- sequential segmented colormap
- derived data:
 - data (per streamline)
 - curvature, torsion, surfrusity
 - signature: complex weighted combination
 - compute cluster hierarchy across all signatures
 - encode color and opacity by cluster
 - tasks:
 - find features, query shape
 - scalability:
 - millions of samples, hundreds of streamlines
 - task:
 - spatial relationships

Idioms: topographic map

- data:
 - geographic geometry
 - scalar spatial field
- derived data:
 - contour map
 - isoline geometry
 - isovalues for specific scalar values
- task:
 - spatial relationships

Idioms: isosurfaces

- data:
 - scalar spatial field
 - contour map
 - isoline geometry
 - isovalues for specific scalar values
- task:
 - spatial relationships

Vector and tensor fields

- data:
 - many arrows per cell
- idiom families:
 - flow glyph
 - contour
 - geometric flow
- derived data:
 - derived from tracing particle interactions
 - sparse set of seed points
 - texture flow
- derived data:
 - derived data, dense seeds
 - flow streamlines
 - global composition to detect features
- empirical study tasks:
 - many arrows per cell
 - identifying critical points, identifying flow types
 - identifying what type of critical point is at a specific location
 - predicting where a particle starting at a specified point will end up (prediction)

Idioms: similarity-clustered streamlines

- data:
 - 3D vector field
 - derived data (from field)
 - streamline trajectory particle will follow
- derived data (per streamline)
 - curvature, torsion, surfrusity
 - signature: complex weighted combination
 - compute cluster hierarchy across all signatures
 - encode color and opacity by cluster
- tasks:
 - find features, query shape
 - scalability:
 - millions of samples, hundreds of streamlines
- task:
 - spatial relationships

Further reading

- Arbor Avis: 1999

Idioms: DVR, multidimensional transfer functions

- direct volume rendering
 - transfer function maps scalar values to color, opacity
 - derived data
 - isosurface geometry
 - isovalues for specific scalar values
- task:
 - spatial relationships

Further reading

- Arbor Avis: 1999
Next Time

* to read

- VAD Ch. 9: Networks
- paper type: technique