Idiom: boxplot
• static item aggregation
• task: find distribution
• data: table
• derived data
– 5 quant...density. These methods are shown in Figure 5.

Idiom: dynamic filtering
• item filtering
• browse through tightly coupled interaction
– alternative to queries that might return far too many or too few
– pro: straightforward and intuitive
– con: difficult to avoid losing signal
– not mutually exclusive

Idiom: scented widgets
• augment widgets for filtering to show information scent
– cues to whether value in drilling down further vs looking elsewhere
– concise, in part of screen normally considered control panel

Idiom: DOSFA
• attribute filtering
• encoding: star glyphs
• reminder: proposals due by Mon 5pm

Reduce items and attributes
• reduce/increase: inverses
• filter
– pro: straightforward and intuitive
– to understand and compare
– con: out of sight, out of mind
• aggregation
– summary informs about whole set
– con: difficult to avoid losing signal
• not mutually exclusive
– combine filter, aggregate
– combine reduce, change, facet

Dimensionality reduction
• attribute aggregation
– derive low-dimensional target space from high-dimensional measured space
– use when you can’t directly measure what you care about
– true dimensionality of dataset constrained to be smaller than dimensionality of measurements
– issue factors, hidden variables

Evaluating DR
– why do people do DR?
– improve performance of downstream algorithm
– avoid curses of dimensionality
– data analysis
– possible use in output: visual data analysis
– DR tasks
– dimension-oriented task sequences
– node-synthetic dimension, map synthetic dimensions to original axes
– cluster-oriented task sequences
– verify clusters, name clusters, match clusters and classes
Linear dimensionality reduction
- principle components analysis (PCA)
 - describe location of each point as linear combination of weights for each axis
 - finding axis: first with most variance, second with next most ...

Nonlinear dimensionality reduction
- many techniques proposed
 - MDS, charting, isomap, LLE, TSNE
 - many literatures: visualization, machine learning, optimization, psychology ...
 - can handle curved rather than linear structure
 - cons: lose all ties to original dim/attrs
 - new dimensions cannot be easily related to original

MDS: Multidimensional Scaling
- confusingly: entire family of methods, linear and nonlinear!
- classical scaling: minimize strain
 - early formulation equivalent to PCA (linear)
 - Nyström spectral methods approximate eigenvectors: O(N)
 - Landmark MDS (Ts & Xia 2004), PostMDS (Brandes & Pich 2004)
 - limitations: quality for very high dimensional sparse data
- distance scaling: minimize stress
 - nonlinear optimization: O(NP)
 - SPACOF (de Leurue 1977)
 - force-directed placement: O(NP)
 - Stochastic Forces (Chaimers 1994)
 - limitations: quality problems from local minima
- Glimmer goal: O(N^2) speed and high quality

Spring-based MDS: naive
- repeat for all points
 - compute spring force to all other points
 - difference between high dim, low dim distance
 - move to better location using computed forces
- compute distances between all points
 - O(N^2) iteration, O(N^4) algorithm

Glimmer algorithm
- multilevel to avoid local minima, designed to exploit GPU
- restriction to decimate
- relaxation as core computation
- relaxation to interpolate up to next level
 - how do you know when it's done?

Stochastic termination
- no absolute threshold, depends on the dataset
 - interactive click to stop does not work for subsystem
- sparse normalized stress approximation
 - minimal overhead to compute (vs full stress)
 - lower pass filter

GPUs
- characteristics
 - small set of localized texture accesses
 - output at predetermined locations
 - no variable length looping
 - avoid conditionals: all floating point units execute same instr at same time
- mapping problems to GPU
 - arrays become textures
 - inner loops become fragment shader code
 - program execution becomes rendering

Faster spring model: Stochastic
- compare distances only with a few points
 - maintain small local neighborhood set
 - O(N) iteration, O(N^2) algorithm
 - small constant: 6 locals, 3 randoms (typically)

Faster spring model: Stochastic
- compare distances only with a few points
 - maintain small local neighborhood set
 - stochastic force [Chalmers 1996]

Glimmer strategy
- stochastic force alg suitable for fast GPU port
- but systematic testing shows it often terminates too soon
- use as subsystem within new multilevel GPU alg with much better convergence properties

Methods and outcomes
- methods
 - quantitative algorithm benchmarks: speed, quality
 - systematic comparison across 8-Q, 10K instances in a few spot checks
 - qualitative judgements of layout quality
- outcomes
 - characterised kinds of datasets where technique yields quality improvements
 - sparse documents
- follow-up work
 - Q1-ONE millions of documents

Finding and verifying clusters
- sparse docs dataset
 - 28K dims, 28K points
 - speed equivalent to classical
 - quality major improvement

Neurocomputing. Special Issue Visual Analytics using Multidimensional Projections, to appear 2014.

Glimmer goal: O(N) speed and high quality