Ch 5: Marks and Channels
Paper: Polaris

Tamara Munzner
Department of Computer Science
University of British Columbia

CPSC 547, Information Visualization
Day 2: 15 September 2015

http://www.cs.ubc.ca/~tmm/courses/547-15
News

• Three copies of physical book available in Reading Room (ICICS/CS 262)
• Signup sheet: mark last column with new probabilities
 – add yourself at end if you weren’t here last time
• Waitlist update: 38 registered so 2 slots open; 2 on waitlist
• Questions/comments were due at 1:30pm today
• Guest lecture from Robert Kosara on Tableau at 2:20
 – my section only 20 minutes
VAD Ch 5: Marks and Channels

Channels: Expressiveness Types and Effectiveness Ranks

Magnitude Channels: Ordered Attributes
- Position on common scale
- Position on unaligned scale
- Length (1D size)
- Tilt/angle
- Area (2D size)
- Depth (3D position)
- Color luminance
- Color saturation
- Curvature
- Volume (3D size)

Identity Channels: Categorical Attributes
- Spatial region
- Color hue
- Motion
- Shape

[VAD Fig 5.1]
Encoding visually

• analyze idiom structure
Definitions: Marks and channels

- **marks**
 - geometric primitives

- **channels**
 - control appearance of marks

Marks
- Points
- Lines
- Areas

Channels
- Position
 - Horizontal
 - Vertical
 - Both
- Color
- Shape
- Tilt
- Size
 - Length
 - Area
 - Volume
Encoding visually with marks and channels

• analyze idiom structure
 – as combination of marks and channels

1: vertical position
mark: line

2: vertical position
horizontal position
mark: point

3: vertical position
horizontal position
color hue
mark: point

4: vertical position
horizontal position
color hue
size (area)
mark: point
Channels

Position on common scale
Position on unaligned scale
Length (1D size)
Tilt/angle
Area (2D size)
Depth (3D position)
Color luminance
Color saturation
Curvature
Volume (3D size)

Spatial region
Color hue
Motion
Shape

Ordered Attributes
Magnitude Channels:
Identity Channels:
Categorical Attributes
Channels: Rankings

Magnitude Channels: Ordered Attributes
- Position on common scale
- Position on unaligned scale
- Length (1D size)
- Tilt/angle
- Area (2D size)
- Depth (3D position)
- Color luminance
- Color saturation
- Curvature
- Volume (3D size)

Identity Channels: Categorical Attributes
- Spatial region
- Color hue
- Motion
- Shape

- **effectiveness principle**
 - encode most important attributes with highest ranked channels
- **expressiveness principle**
 - match channel and data characteristics
Accuracy: Fundamental Theory

Steven’s Psychophysical Power Law: $S = I^N$
Accuracy: Vis experiments

Discriminability: How many usable steps?

• must be sufficient for number of attribute levels to show
 – linewidth: few bins

[mappa.mundi.net/maps/maps_014/telegeography.html]
Separability vs. Integrality

Position
+ Hue (Color)

2 groups each

Fully separable

Size
+ Hue (Color)

2 groups each

Some interference

Width
+ Height

3 groups total: integral area

Some/significant interference

Red
+ Green

4 groups total: integral hue

Major interference
Polaris

A System for Query, Analysis and Visualization of Multi-dimensional Relational Databases

Chris Stolte, Diane Tang, Pat Hanrahan

http://www.graphics.stanford.edu/projects/polaris/
Polaris: Stolte, Tang, and Hanrahan

• infovis spreadsheet
 – table cells have graphical elements, not just numbers
 – wide range of channels and marks

• example
 – marks: circles
 – color channel: saturation
 – size channel: area
 – partition: state x product:month
 • ord x ord

Table Algebra :: Interactive Interface

• drag and drop actions map to formal language underneath
 – partitioning using shelves
 – different results for ord vs quant

\[O \times Q = \text{Quarter} \times \text{Profit} = \{(\text{Qtr1, Profit}), (\text{Qtr2, Profit}), (\text{Qtr3, Profit}), (\text{Qtr4, Profit})\} : \]

![Diagram showing partitioning of data with ordinal and quantitative fields.](image)

Polaris

- example
 - marks: Gantt chart bars
 - color channels: nominal / categorical
 - spatial position channels: country x year
 - ord x quant

Polaris

- example
 - views: scatterplots
 - marks: points
 - spatial position channels: profit x month
 - quant x (2 ord)

Terminology I: Now and Upcoming

• Marks and Channels
 – retinal variables/properties: visual channels
 – mark: mark

• Data Abstraction
 – column or field: attribute
 • nominal: categorical
 • ordinal: ordered
 • quantitative: quantitative
 – row or record: item
 – dimension / independent / ordinal: key attribute
 • all ordinal fields treated as dimensions in Polaris
 – measure / dependent: value attribute
 • all quantitative fields treated as measures in Polaris
Terminology II: Upcoming

• Data Abstraction
 – deriving data

• Map Color and Other Channels
 – hue: hue
 – value: saturation
 – brightness: luminance

• Manipulate View
 – sorting

• Facet Into Multiple Views
 – pane: view
 – partitioning
 – brushing: linked highlighting

• Reduce Items and Attributes
 – aggregation, filtering
Polaris: Pre and post

• influences
 – Mackinlay’s APT paper/system (1986)
 – Cleveland’s Visualizing Data book (1993)

• Stolte and Hanrahan commercialized as Stanford spinoff Tableau Software
 – major success story in vis, $2B IPO in 2013
 – Mackinlay joined in 2004, Wilkinson joined in 2014

• Tableau use in this course
 – very useful for analysis projects
 – possible sandbox for experimentation when starting programming projects
 – you can request free student license, good for one year
 • http://www.tableau.com/academic/students
Further reading: Articles

- **Crowdsourcing Graphical Perception: Using Mechanical Turk to Assess Visualization Design.** Jeffrey Heer and Michael Bostock. Proc. CHI 2010

Further reading: Books

 – Chap 5: Marks and Channels

Next Time

• to read
 – VAD Ch. 1: What’s Vis, and Why Do It? (review, mostly covered in first class)
 – VAD Ch. 2: Data Abstraction (new material)
Now

• Guest lecture/demo from Robert Kosara on Tableau