Ch 11: Manipulate View
Papers: Genealogical Graphs

Tamara Munzner
Department of Computer Science
University of British Columbia

CPSC 547, Information Visualization
Day 10: 15 October 2015

http://www.cs.ubc.ca/~tmm/courses/547-15
News

• marks for lectures 6-10 sent out this morning

• reminder: submit 3 separate questions
 – not 2, not 1
Encode

Arrange
- Express
- Separate

Order
- Align

Use

Map from categorical and ordered attributes
- Color
 - Hue
 - Saturation
 - Luminance
- Size, Angle, Curvature, ...

Shape
- + • ■ △

Motion
- Direction, Rate, Frequency, ...

Manipulate
- Change
- Select
- Navigate

Facet
- Juxtapose
- Partition
- Superimpose

Reduce
- Filter
- Aggregate
- Embed

Map Color Motion Size, Angle, Curvature, ...
Hue Saturation Luminance Shape Direction, Rate, Frequency, ...
from categorical and ordered attributes

How?
How to handle complexity: 3 more strategies

+ 1 previous

Manipulate

- Change
- Select
- Navigate

Facet

- Juxtapose
- Partition
- Superimpose

Reduce

- Filter
- Aggregate
- Embed

Derive

- change view over time
- facet across multiple views
- reduce items/attributes within single view
- derive new data to show within view
How to handle complexity: 3 more strategies

<table>
<thead>
<tr>
<th>Manipulate</th>
<th>Facet</th>
<th>Reduce</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change</td>
<td>Juxtapose</td>
<td>Filter</td>
</tr>
<tr>
<td>Select</td>
<td>Partition</td>
<td>Aggregate</td>
</tr>
<tr>
<td>Navigate</td>
<td>Superimpose</td>
<td>Embed</td>
</tr>
</tbody>
</table>

- **Change over time**
 - Most obvious & flexible of the 4 strategies

Derive
Idiom design choices: Interaction

<table>
<thead>
<tr>
<th>Manipulate</th>
<th>Facet</th>
<th>Reduce</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Change</td>
<td>→ Juxtapose</td>
<td>→ Filter</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ Select</td>
<td>→ Partition</td>
<td>→ Aggregate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ Navigate</td>
<td>→ Superimpose</td>
<td>→ Embed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Manipulate

- **Change over Time**
- **Select**

- **Navigate**
 - **Item Reduction**
 - **Zoom**
 - Geometric or Semantic
 - **Pan/Translate**
 - **Constrained**

- **Attribute Reduction**
 - **Slice**
 - **Cut**
 - **Project**
Change over time

• change any of the other choices
 – encoding itself
 – parameters
 – arrange: rearrange, reorder
 – aggregation level, what is filtered...

• why change?
 – one of four major strategies
 • change over time
 • facet data by partitioning into multiple views
 • reduce amount of data shown within view
 – embedding focus + context together
 – most obvious, powerful, flexible
 – interaction entails change
Idiom: Re-encode System: Tableau

made using Tableau, http://tableausoftware.com
Idiom: **Reorder**

- **data:** tables with many attributes
- **task:** compare rankings

System: **LineUp**

Idiom: **Realign**

- stacked bars
 - easy to compare
 - first segment
 - total bar
- align to different segment
 - supports flexible comparison

System: **LineUp**

Idiom: **Animated transitions**

- smooth transition from one state to another
 - alternative to jump cuts
 - support for item tracking when amount of change is limited

- example: multilevel matrix views
 - scope of what is shown narrows down
 - middle block stretches to fill space, additional structure appears within
 - other blocks squish down to increasingly aggregated representations

Select and highlight

• selection: basic operation for most interaction

• design choices
 – how many selection types?
 • click vs hover: heavyweight, lightweight
 • primary vs secondary: semantics (eg source/target)

• highlight: change visual encoding for selection targets
 – color
 • limitation: existing color coding hidden
 – other channels (eg motion)
 – add explicit connection marks between items
Navigate: Changing item visibility

• change viewpoint
 – changes which items are visible within view
 – camera metaphor
 • zoom
 – geometric zoom: familiar semantics
 – semantic zoom: adapt object representation based on available pixels
 » dramatic change, or more subtle one
 • pan/translate
 • rotate
 – especially in 3D
 – constrained navigation
 • often with animated transitions
 • often based on selection set
Idiom: **Semantic zooming**

- visual encoding change
 - colored box
 - sparkline
 - simple line chart
 - full chart: axes and tickmarks

System: **LiveRAC**

Navigate: Reducing attributes

- **continuation of camera metaphor**
 - **slice**
 - show only items matching specific value for given attribute: slicing plane
 - axis aligned, or arbitrary alignment
 - **cut**
 - show only items on far slide of plane from camera
 - **project**
 - change mathematics of image creation
 - orthographic
 - perspective
 - many others: Mercator, cabinet, ...

Further reading: Ch 11 Manipulate

- **Pad++: A Zooming Graphical Interface for Exploring Alternate Interface Physics** Ben Bederson, and James D Hollan, Proc UIST 94.

Further reading: General

• **Tuning and testing scrolling interfaces that automatically zoom.** Andy Cockburn, Joshua Savage, Andrew Wallace. Proc CHI 05.

• **Effective View Navigation.** George W. Furnas, Proc. SIGCHI 97, pp. 367-374 DOI

Genealogical graphs

• family tree is a misnomer
 – single person has tree of ancestors, tree of descendants
 – pedigree collapse inevitable
 • diamond in ancestor graph

• crowding problem
 – exponential

• fractal layout
 – poor info density
 – no spatial ordering for generations

Layouts

• rooted trees: standard layouts
 – connection
 – containment
 – adjacent aligned position
 – indented position

Layouts

• free trees
 – no root

• adapting rooted methods
 – temporary root for given focus
 – containment (nested)

Dual trees abstraction

- explore canonical subsets and combinations, easy to interpret, scales well
- no crossings, nodes ordered by generation
- doubly rooted: x leftmost descend, y rightmost ancestor
 - offset roots from hourglass diagram

Another example

- vertical connection
- horizontal connection
- indented

- upcoming chapters
 - layering
 - aggregation

Interaction as fundamental to design

• navigation
 – topological navigation via collapse/expand on selection
 • parents, children
 • expand can trigger rotation
 – collapsing others
 – layout driven by navigation
 – geometric zoom/pan
 – constrained navigation: automatic camera framing
• animated transitions
 – 3 phases: fade out, move, fade in
• mouseover hover
 – preview dots: expand if collapsed

Custom widget

- popup marking menu
 - flick up or down, ballistic
 - subtree drag-out widget

Next Time

• to read
 – VAD Ch. 12: Facet into Multiple Views

• one week from today: pitches
 – no reading, think about project and prepare slides
 – 2 minutes each
 – send me your slides by noon Thu
 • number of slides up to you. practice, time yourself!

• last week of October: no classes!