Information Visualization

Intro

Tamara Munzner
Department of Computer Science
University of British Columbia

10 September 2015

http://www.cs.ubc.ca/~tmm/courses/547-15
Audience

• no prerequisites
 – many areas helpful but not required
 • human-computer interaction, computer graphics, cognitive psychology, graphic design, algorithms, machine learning, statistics, ...

• open to non-CS people
 – if no programming background, can do analysis or survey project

• open to advanced undergrads
 – talk to me

• open to informal auditors
 – some or all days of readings/discussion, as you like
 • you’ll get out of it what you put into it...
Waitlist

• currently 40 registered and 16 on waitlist
 – wow!
• don’t panic, people are still shopping around for classes
• highly likely that all who want to take can be accommodated
 – without schlepping extra chairs each time :-)
• make sure to record your name on signup sheet today
 – with probability of attending, including real vs audit
 – update at end of class today, and start of class

• structure plans thus slightly tenative
 – might tweak depending on final enrollment
Class time

• week 1
 – I lecture

• weeks 2-9: Participation [30%]
 – before class: you read chapter+paper, write questions/comments
 – during class: I lecture briefly, we discuss, in-class design exercises, ...
 • week 2, 3
 – guest lectures (Robert Kosara, Matt Brehmer)
 • week 8
 – no class (annual VIS conference)

• weeks 10-13: Presentations [20%]
 – before one of the classes: you each read paper on topic of your choice
 – during class: you present it to everybody else (~10 min)
Readings

• textbook
 • http://www.cs.ubc.ca/~tmm/vadbook/
 – library has multiple ebook copies
 – to buy yourself, cheapest is amazon.com

• papers
 – links posted on course page
 – if DL links, use library EZproxy from off campus

• readings posted by one week before class

• usually one chapter + one paper per class session
Paper Types

• technique/algorithm
• design studies (problem-driven)
• systems
• evaluation
• model/theory
Participation [30%]

• written questions on reading in advance (18% of total mark)
 – due 1:30pm (30 min before class)
 – 3 total, at least 1 for each reading
 – bring printout or laptop with you, springboard for discussion

• discussion/participation in class (12% of total mark)

• attendance expected
 – tell me in advance if you’ll miss class (and why)
 – question credit still possible if submitted in advance
 – tell when you recover if you were ill
Questions

• questions or comments
• fine to be less formal than written report
 – correct grammar and spelling still expected
 – be concise: a few sentences is good, one paragraph max!
• should be thoughtful, show you’ve read and reflected
 – poor to ask something trivial to look up
 – ok to ask for clarification of genuinely confusing section
• examples on http://www.cs.ubc.ca/~tmm/courses/infovis/structure.html
Projects [50%]

• solo, or group of 2, or group of 3
 – groups highly encouraged; amount of work commensurate with group size

• stages
 – pitches (oral, in class): Oct 22
 – meetings (individual, outside class): through Nov 5
 – proposals (written): Nov 9, 5pm
 – status updates incl related work (written): Nov 23, 5pm
 – final presentations (oral): Dec 15 afternoon (times TBD)
 – final reports (written): Dec 17, 5pm

• resources
 – software, data
 – project ideas
 – guest lecture: Brehmer on toolkits/resources (Sep 29)
Projects

• programming
 – common case
 – I will only consider supervising students who do programming projects
 – three types
 • problem-driven design studies (target specific task/data)
 • technique-driven (explore design choice space for encoding or interaction idiom)
 • algorithm implementation (as described in previous paper)

• analysis
 – use existing tools on dataset
 – detailed domain survey
 – particularly suitable for non-CS students

• survey
 – very detailed domain survey
 – particularly suitable for non-CS students
Projects: Design Studies

• BYOD (Bring Your Own Data)
 – you have your own data to analyze
 – your thesis/research topic (very common case)
 – dovetail with another course (sometime possible but timing can be difficult)

• FDOI (Find Data Of Interest)
 – many existing datasets, see resource page to get started
 • http://www.cs.ubc.ca/group/infovis/resources.shtml
Presentations [20%]

• last several weeks of class
• present, analyze, and critique one paper
 – send me topic choices by Nov 2, I will assign papers accordingly
• expectations
 – slides required
 – summary/description important, but also your own thoughts
 • analysis according to book framework
 • critique of strengths and weaknesses
• timing
 – exact times TBD depending on enrollment
 – likely around 10 minutes each
• topics at http://www.cs.ubc.ca/~tmm/courses/infovis/presentations.html
Marking

• 50% Project
 – 2% Pitches
 – 10% Proposal
 – 6% Status Updates
 – 12% Final Presentation
 – 20% Final Report
 – 50% Content

• 20% Presentations
 – 75% Content: Summary 50%, Analysis 25%, Critique 25%
 – 25% Delivery: Presentation Style 50%, Slide Quality 50%

• 30% Participation
 – 60% Written Questions
 – 40% In-Class Discussion/Exercises

• marking by buckets
 – great 100%
 – good 89%
 – ok 78%
 – poor 67%
 – zero 0%
Course Goals

• twofold goal
 – specific: teach you some infovis
 – generic: teach you how to be a better researcher

• feedback through detailed written comments on writing and presenting
 – both content and style
 – at level of paper review for your final project
 – goal: within a week or so

• fast marking for reading questions
 – great/good/ok/poor/zero
 – goal: turn around before next class
 • one week at most
Finding me

- email is the best way to reach me: tmm@cs.ubc.ca
- office hours Tue right after class (3:30-4:30pm)
 - or by appointment
- X661 (X-Wing of ICICS/CS bldg)

- course page is font of all information
 - don’t forget to refresh, frequent updates
 - http://www.cs.ubc.ca/~tmm/courses/547-15
Chapters/Topics

– What’s Vis and Why Do It?
– Marks and Channels
– What: Data Abstractions
– Why: Task Abstractions
– Rules of Thumb
– Analysis: Four Levels for Validation
– Arrange Tables
– Arrange Spatial Data
– Arrange Networks
– Map Color and Other Channels
– Manipulate View
– Facet Into Multiple Views
– Reduce Items and Attributes
– Analysis Case Studies
Guest Lectures

• Tue Sep 15 (next time!)
 – Robert Kosara, Tableau
 – Tableau intro/overview demo

• Tue Sep 29
 – Matt Brehmer, UBC
 – resources discussion/demos

 – in both cases, brief intro lecture on readings from me first
Defining visualization (vis)

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

Why?...
Why have a human in the loop?

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

Visualization is suitable when there is a need to augment human capabilities rather than replace people with computational decision-making methods.

• don’t need vis when fully automatic solution exists and is trusted
• many analysis problems ill-specified
 – don’t know exactly what questions to ask in advance
• possibilities
 – long-term use for end users (e.g. exploratory analysis of scientific data)
 – presentation of known results
 – stepping stone to better understanding of requirements before developing models
 – help developers of automatic solution refine/debug, determine parameters
 – help end users of automatic solutions verify, build trust
Why use an external representation?

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

- external representation: replace cognition with perception

Why have a computer in the loop?

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

- beyond human patience: scale to large datasets, support interactivity – consider: what aspects of hand-drawn diagrams are important?

Why depend on vision?

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

- human visual system is high-bandwidth channel to brain
 - overview possible due to background processing
 - subjective experience of seeing everything simultaneously
 - significant processing occurs in parallel and pre-attentively
- sound: lower bandwidth and different semantics
 - overview not supported
 - subjective experience of sequential stream
- touch/haptics: impoverished record/replay capacity
 - only very low-bandwidth communication thus far
- taste, smell: no viable record/replay devices
Why show the data in detail?

- summaries lose information
 - confirm expected and find unexpected patterns
 - assess validity of statistical model

Anscombe’s Quartet

<table>
<thead>
<tr>
<th>Identical statistics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>x mean</td>
<td>9</td>
</tr>
<tr>
<td>x variance</td>
<td>10</td>
</tr>
<tr>
<td>y mean</td>
<td>8</td>
</tr>
<tr>
<td>y variance</td>
<td>4</td>
</tr>
<tr>
<td>x/y correlation</td>
<td>1</td>
</tr>
</tbody>
</table>
Idiom design space

The design space of possible vis idioms is huge, and includes the considerations of both how to create and how to interact with visual representations.

• **idiom**: distinct approach to creating or manipulating visual representation

 – how to draw it: **visual encoding** idiom
 • many possibilities for how to create

 – how to manipulate it: **interaction** idiom
 • even more possibilities
 – make single idiom dynamic
 – link multiple idioms together through interaction

Why focus on tasks and effectiveness?

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks and effectively.

• tasks serve as constraint on design (as does data)
 – idioms do not serve all tasks equally!
 – challenge: recast tasks from domain-specific vocabulary to abstract forms

• most possibilities ineffective
 – validation is necessary, but tricky
 – increases chance of finding good solutions if you understand full space of possibilities

• what counts as effective?
 – novel: enable entirely new kinds of analysis
 – faster: speed up existing workflows
Resource limitations

Vis designers must take into account three very different kinds of resource limitations: those of computers, of humans, and of displays.

• computational limits
 – processing time
 – system memory

• human limits
 – human attention and memory

• display limits
 – pixels are precious resource, the most constrained resource
 – information density: ratio of space used to encode info vs unused whitespace
 • tradeoff between clutter and wasting space, find sweet spot between dense and sparse
Analysis: What, why, and how

- **what** is shown?
 - **data** abstraction

- **why** is the user looking at it?
 - **task** abstraction

- **how** is it shown?
 - **idiom**: visual encoding and interaction

- abstract vocabulary avoids domain-specific terms
 - translation process iterative, tricky

- what-why-how analysis framework as scaffold to think systematically about design space
How?

<table>
<thead>
<tr>
<th>Encode</th>
<th>Manipulate</th>
<th>Facet</th>
<th>Reduce</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arrange</td>
<td>Change</td>
<td>Juxtapose</td>
<td>Filter</td>
</tr>
<tr>
<td>Express</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Separate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Order</td>
<td>Select</td>
<td>Partition</td>
<td>Aggregate</td>
</tr>
<tr>
<td>Align</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use</td>
<td>Navigate</td>
<td>Superimpose</td>
<td>Embed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Map from **categorical** and **ordered** attributes

- **Color**
 - Hue
 - Saturation
 - Luminance

- **Size, Angle, Curvature, ...**

- **Shape**
 - +
 - •
 - □
 - △

- **Motion**
 - Direction, Rate, Frequency, ...

- **How?**

What?

Why?

How?
Encode

Why?
How?
What?

Arrange
→ Express
→ Order
→ Use

Separate
→ Align

Map from categorical and ordered attributes

Color
→ Hue
→ Saturation
→ Luminance

Size, Angle, Curvature, ...

Shape

Motion
Direction, Rate, Frequency, ...
Marks and channels

• marks
 — geometric primitives

• channels
 — control appearance of marks
Channels: Expressiveness types and effectiveness rankings

Magnitude Channels: Ordered Attributes

- Position on common scale
- Position on unaligned scale
- Length (1D size)
- Tilt/angle
- Area (2D size)
- Depth (3D position)
- Color luminance
- Color saturation
- Curvature
- Volume (3D size)

Identity Channels: Categorical Attributes

- Spatial region
- Color hue
- Motion
- Shape
Dataset Types

- **Tables**
 - Items (rows)
 - Attributes (columns)
 - Cell containing value

- **Networks**
 - Nodes (item)
 - Links

- **Fields (Continuous)**
 - Cell
 - Attributes (columns)
 - Value in cell

- **Geometry (Spatial)**
 - Position
 - Grid of positions

- **Multidimensional Table**
 - Key 1
 - Key 2
 - Attributes
 - Value in cell

- **Trees**
Attribute types

Attribute Types

- Categorical
- Ordered
 - Ordinal
 - Quantitative
• \{action, target\} pairs
 – discover distribution
 – compare trends
 – locate outliers
 – browse topology
Actions: low-level query

• how much of the data matters?
 – one, some, all
Why: Targets

- **ALL DATA**
 - Trends
 - Outliers
 - Features

- **ATTRIBUTES**
 - One
 - Distribution
 - Extremes
 - Many
 - Dependency
 - Correlation
 - Similarity

- **NETWORK DATA**
 - Topology
 - Paths

- **SPATIAL DATA**
 - Shape
Rules of Thumb

• No unjustified 3D
• Eyes beat memory
• Resolution over immersion
• Overview first, zoom and filter, details on demand
• Function first, form next
• ...

Four Levels of Design

- domain situation: all aspects of user context
- data/task abstraction: why/what
- encoding/interaction idioms: how
- algorithm: efficient implementation of idioms
Nested Levels of Design and Validation

- Domain situation
 - Observe target users using existing tools

- Data/task abstraction
 - Visual encoding/interaction idiom
 - Justify design with respect to alternatives
 - Algorithm
 - Measure system time/memory
 - Analyze computational complexity

 - Analyze results qualitatively
 - Measure human time with lab experiment (*user study*)
 - Observe target users after deployment (*field study*)

- Measure adoption

- mismatch: cannot show idiom good with system timings
- mismatch: cannot show abstraction good with lab study
How?

<table>
<thead>
<tr>
<th>Encode</th>
<th>Manipulate</th>
<th>Facet</th>
<th>Reduce</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arrange</td>
<td>Change</td>
<td>Juxtapose</td>
<td>Filter</td>
</tr>
<tr>
<td>➔ Express</td>
<td>➔ Hue</td>
<td>➔ Partition</td>
<td>➔ Filter</td>
</tr>
<tr>
<td>➔ Separate</td>
<td>➔ Saturation</td>
<td>➔ Aggregate</td>
<td></td>
</tr>
<tr>
<td>Order</td>
<td>Select</td>
<td>➔ Superimpose</td>
<td>➔ Embed</td>
</tr>
<tr>
<td>➔ Align</td>
<td>➔ Luminance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use</td>
<td>➔ Navigate</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What?
- **Encode**
 - **Arrange**
 - Express
 - Separate
 - **Order**
 - Align
 - **Use**

Why?

How?

- **Map**
 - from *categorical* and *ordered* attributes
 - **Color**
 - Hue
 - Saturation
 - Luminance
 - **Size, Angle, Curvature, ...**
 - **Shape**
 - +
 - ●
 - □
 - △
 - **Motion**
 - Direction, Rate, Frequency, ...

- **Manipulate**
 - **Change**
 - **Select**
 - **Navigate**

- **Facet**
 - **Juxtapose**
 - **Partition**
 - **Superimpose**

- **Reduce**
 - **Filter**
 - **Aggregate**
 - **Embed**
Arrange space

Encode

- Arrange
 - Express
 - Order
 - Use
- Separate
- Align

Arrange space
Arrange tables

Express Values

Separate, Order, Align Regions

Separate

Order

Align

Axis Orientation

Rectilinear

Parallel

Radial

Layout Density

Dense

Space-Filling

1 Key

2 Keys

3 Keys

Many Keys

1 Key

2 Keys

3 Keys

Many Keys

List

Matrix

Volume

Recursive Subdivision
Arrange spatial data

➡️ Use Given

➡️ Geometry
 ➡️ Geographic
 ➡️ Other Derived

➡️ Spatial Fields

➡️ Scalar Fields (one value per cell)
 ➡️ Isocontours
 ➡️ Direct Volume Rendering

➡️ Vector and Tensor Fields (many values per cell)
 ➡️ Flow Glyphs (local)
 ➡️ Geometric (sparse seeds)
 ➡️ Textures (dense seeds)
 ➡️ Features (globally derived)
Arrange networks and trees

- **Node-link Diagrams**
 - Connections and Marks
 - ![Diagram](image)

- **Adjacency Matrix**
 - Derived Table
 - ![Matrix](image)

- **Enclosure**
 - Containment Marks
 - ![Marks](image)
Color: Luminance, saturation, hue

- 3 channels
 - identity for categorical
 - hue
 - magnitude for ordered
 - luminance
 - saturation

- other common color spaces
 - RGB: poor choice for visual encoding
 - HSL: better, but beware
 - lightness ≠ luminance
Manipulate

Change View Over Time

Select

Navigate

Item Reduction

Attribute Reduction

Zoom *Geometric* or *Semantic*

Geometric or Semantic

Pan/Translate

Slice

Constrained
Facet

- Juxtapose

- Partition

- Superimpose

- Share Encoding: Same/Different
 - Linked Highlighting

- Share Data: All/Subset/None

- Share Navigation
Juxtapose and coordinate views

➡ Share Encoding: Same/Different

➡ Linked Highlighting

➡ Share Data: All/Subset/None

➡ Share Navigation
Reduce items and attributes

- **reduce/increase**: inverses
- **filter**
 - **pro**: straightforward and intuitive
 - to understand and compute
 - **con**: out of sight, out of mind
- **aggregation**
 - **pro**: inform about whole set
 - **con**: difficult to avoid losing signal
- **not mutually exclusive**
 - combine filter, aggregate
 - combine reduce, change, facet

<table>
<thead>
<tr>
<th>Reduce</th>
<th>Filter</th>
<th>Aggregate</th>
<th>Embed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Items</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attributes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Items</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attributes</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Embed: Focus+Context

• combine information within single view
• elide
 – selectively filter and aggregate
• superimpose layer
 – local lens
• distortion design choices
 – region shape: radial, rectilinear, complex
 – how many regions: one, many
 – region extent: local, global
 – interaction metaphor

Embed

Elide Data

Superimpose Layer

Distort Geometry
Next Time

• to read
 – Book: Marks and Channels (Ch 5)
 – Paper: Polaris
 • academic paper, Tableau is the spinoff company

• guest lecture by Robert Kosara on Tableau