Information Visualization

Intro

Tamar Munzner
Department of Computer Science
University of British Columbia
13 September 2015

http://www.cs.ubc.ca/~tmm/courses/547-15

Audience
• no prerequisites
– many areas helpful but not required
– human-computer interaction, computer graphics, cognitive psychology, graphic design, algorithms, machine learning, statistics
• open to non-CS people
– if no programming background, can do analysis or survey project
– open to advanced undergrads
– talk to me
• open to informal auditors
– some or all days of readings/discussion, as you like
– you get out of it what you put into it...

Waitlist
• currently 40 registered and 16 on waitlist
– wow!
• don’t panic, people are still shopping around for classes
• highly likely that all who want to take can be accommodated
– without sprinkling extra chairs each time :-)
• make sure to record your name on signup sheet today
– with probability of attendance including real vs audit
– update at end of class today and start of class
• structure plans thus slightly tentative
– might tweak depending on final enrollment

Marking
• 50% Project
– 2% Pitches
– 10% Proposal
– 6% Status Updates
– 12% Final Presentation
– 20% Final Exam
– 25% Participation
– 25% Readings

Class time
• week I
– I lecture
• weeks 2-9: Participation [30%]
– before class, you do chapter-paper, write questions/comments
– during class I lecture briefly, we discuss, in-class design exercises...
• week 2: 1
– guest lectures (Rabani, Kastor, Pax Brinner)
• week 8
– in-class exam (or if conferences)
• weeks 10-13: Presentations [20%]
– before one of the classes: you each read paper on topic of your choice
– during class you present it to everybody else (~10 min)

Course Goals
• twofold goal
– get you to do something useful
– to use existing tools
• feedback through detailed written comments on writing and presenting
– both content and style
– at level of paper review for your final project
– goal: within a week or so

Participation [30%]
• written questions on reading in advance (18% of total mark)
– due 1:30pm (30 min before class)
– 3 total, at least 1 for each reading
– bring printout or laptop with you, springboard for discussion
• discussion/participation in class (12% of total mark)
– attendance expected
– tell me in advance if you’ll miss class (and why)
– question credit still possible if submitted in advance
– tell when you recover if you were ill

Presentations [20%]
• last several weeks of class
• present, analyze, and critique one paper
– send me topic choices by Nov 21, will assign papers accordingly
• expectations
– slides required
– summary/description important, but also your own thoughts
– analysis according to book framework
– critique of strengths and weaknesses
– timing
– exact time TBD depending on enrollment
– likely around 10 minutes each
• topics at http://www.cs.ubc.ca/~tmm/courses/infovis/presentations.html

Find me
• email is the best way to reach me: tmm@cs.ubc.ca
• office hours Tue right after class (3:30-4:30pm)
• by appointment
• X661 (X-Wing of ICICS/CS bldg)
• course page is font of all information
– don’t forget to refresh frequent updates
– http://www.cs.ubc.ca/~tmm/courses/547-15

Chapters/Topics
– What’s Vis and Why Do It?
– Maps and Choropleth
– What Data Abstraction
– Rules of Thumb
– Analytic Four Levels for Validiation
– Arrage Tables
– Arrage Spatial Data
– Arrage Networks
– Map Color and Other Channels
– Multiple Views
– Reduce Items and Attributes
– Analyze Case Studies

Readings
• textbook

– library has multiple ebook copies
– to buy yourself, cheapest is amazon.com

– papers
– listed posted on course page
– if OL links, use library EZproxy from off campus
– readings posted by one week before class
– usually one chapter + one paper per class session

Projects
• solo, or group of 2, or group of 3
– groups highly encouraged; amount of work commensurate with group size

Projects: Design Studies
• BYOD (Bring Your Own Data)
– you have your own data to analyze
– your thesis/research topic (very common case)

Projects
• programming
– common case
– I will only consider supervising students who do programming projects
– three types
– problem-driven design studies (target specific task)
– technique-driven (explore design choice space for encoding or interaction idiom)
– algorithm implementation (as described in previous paper)

– analysis
– use existing tools on dataset
– detailed domain survey
– particularly suitable for non-CS students

– survey
– very detailed domain survey
– particularly suitable for non-CS students

Marking
• 50% Project
– 2% Pitches
– 10% Proposal
– 6% Status Updates
– 12% Final Presentation
– 20% Final Exam
– 25% Participation
– 25% Presentations

– 75% Content: Summary 50%, Analysis 25%, Critique 25%
– question credit still possible if submitted in advance

– tell me in advance if you’ll miss class (and why)
– question credit still possible if submitted in advance
– tell when you recover if you were ill

Projects
• technique/algorithm
• data visualization (problem-driven)
• systems
• evaluation
• model/theory

– programming
– common case
– I will only consider supervising students who do programming projects

– analyze
– use existing tools on dataset
– detailed domain survey
– particularly suitable for non-CS students

– survey
– very detailed domain survey
– particularly suitable for non-CS students

• reading assignment
– many existing datasets, see resource page to get started
– http://www.cs.ubc.ca/group/infovis/resources.shtml

– technical/descriptive analysis
– critique of strengths and weaknesses

– feedback through detailed written comments on writing and presenting
– both content and style
– at level of paper review for your final project
– goal: within a week or so

– fast marking for reading questions
– great/good/poor/zero
– tell me in advance if you’ll miss class (and why)
– question credit still possible if submitted in advance

– survey
– very detailed domain survey
– particularly suitable for non-CS students

Course Work
• textbook

– library has multiple ebook copies
– to buy yourself, cheapest is amazon.com

– papers
– listed posted on course page
– if OL links, use library EZproxy from off campus
– readings posted by one week before class
– usually one chapter + one paper per class session

Marking
• no prerequisites
– many areas helpful but not required
– human-computer interaction, computer graphics, cognitive psychology, graphic design, algorithms, machine learning, statistics
• open to non-CS people
– if no programming background, can do analysis or survey project
– open to advanced undergrads
– talk to me
• open to informal auditors
– some or all days of readings/discussion, as you like
– you get out of it what you put into it...

Waitlist
• currently 40 registered and 16 on waitlist
– wow!
• don’t panic, people are still shopping around for classes
• highly likely that all who want to take can be accommodated
– without sprinkling extra chairs each time :-)
• make sure to record your name on signup sheet today
– with probability of attendance including real vs audit
– update at end of class today and start of class

• structure plans thus slightly tentative
– might tweak depending on final enrollment

Marking
• 50% Project
– 2% Pitches
– 10% Proposal
– 6% Status Updates
– 12% Final Presentation
– 20% Final Exam
– 25% Participation
– 25% Presentations

– 75% Content: Summary 50%, Analysis 25%, Critique 25%
– question credit still possible if submitted in advance
Topics Preview

Defining visualization (vis)

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

Why?...

Why have a human in the loop?

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

- Vision is not reliable when there is a need to augment human capabilities rather than replace people with computational decision-making methods.
- don't need vis when fully automatic solution exists and is trusted
- many analysis problems ill-specified
- don't know exactly what questions to ask in advance
- possibilities
 - long-term use for end users (e.g. exploratory analysis of scientific data)
 - presentation of known results
 - stepping stone to better understanding of requirements before developing models
- help developers of automatic solution refine/debug, determine parameters
- help end users of automatic solutions verify/build trust

Why show the data in detail?

- summaries lose information
- confirm expected and find unexpected patterns
- assess validity of statistical models
- development of automatic solution refinement, determine parameters
- what-why-how analysis framework as scaffold to think systematically

Why focus on tasks and effectiveness?

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

- tasks serve as constraint on design (as does data)
- vis designers must take into account three very different kinds of resource limitations: those of computers, of humans, and of displays.

Resource limitations

Vis designers must take into account three very different kinds of resource limitations:

- computational limits
 - processing time
 - system memory
- human limits
 - human attention and memory
- display limits
 - pixels are precious resource, the most constrained resource
 - information density: ratio of space used to encode info vs unused whitespace
 - traded between clutter and wasted space
- data abstraction
 - what is shown?
 - what is it shown?
 - why is the user looking at it?
 - task vs abstraction

Why use an external representation?

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

- external representation: replace cognition with perception

Idiom design space

The design space of possible Vis idioms is huge, and includes the considerations of both how to create and how to interact with visual representations.

- **idiom**: distinct approach to creating or manipulating visual representation
 - how to draw in visual encoding idioms
 - many possibilities for how to create
 - how to manipulate: interaction idioms
 - even more possibilities
 - visual idioms: single idiom dynamic
 - link multiple idioms together through interaction

Why depend on vision?

- human visual system is high-bandwidth channel to brain
 - overview possible due to background processing
 - subjective experiences of seeing everything simultaneously
 - sound: lower bandwidth and different semantics
 - overview not supported
 - subjective experiences of sequential streams
 - touch/haptics: impoverished record/replay capacity
 - only very low-bandwidth communication thus far
 - taste, smell, no viable record/replay devices

Why have a computer in the loop?

- beyond human patience: scale to large datasets, support interactivity

Why have a computer in the loop?

- beyond human patience: scale to large datasets, support interactivity

Encoding

- **encode**: distinct approach to creating or manipulating visual representation
 - how to draw in visual encoding idioms
 - many possibilities for how to create
 - how to manipulate: interaction idioms
 - even more possibilities
 - visual idioms: single idiom dynamic
 - link multiple idioms together through interaction

Mark types

- **Marks**: point, line, area
- **channels**: position, color, size, angle, curvature, density

Anscorn's Quartet

- x mean 9
- x variance 10
- y mean 8
- y variance 4
- x/y correlation 1

Vis designers must take into account three very different kinds of resource limitations: those of computers, of humans, and of displays.
Facet
- Juxtapose
- Partition
- Superimpose

Juxtapose and coordinate views
- Share Encoding: Same/Different
- Linked highlighting
- Share Data: All/Subset/None
- Share Navigation

Reduce items and attributes
- Reduce/increase: inverses
- Filter
 - pro: straightforward and intuitive
 - con: out of sight, out of mind
- Aggregation
 - pro: inform about whole set
 - con: difficult to avoid losing signal
- Not mutually exclusive
 - combine filter, aggregate
 - combine reduce, change, facet

Embed: Focus+Context
- Combine information within single view
- Elide
 - selectively filter and aggregate
- Superimpose layer
 - local lens
- Distortion design choices
 - region shape: radial, rectilinear, complex
 - how many regions: one, many
 - region extent: local, global
 - interaction metaphor

Next Time
- to read
 - Book: Marks and Channels (Ch 5)
 - Paper: Polaris
- Academic paper, Tableau is the spinoff company
- Guest lecture by Robert Kosara on Tableau