Global Encodings
- Users as circular nodes
- Importance as the size of the nodes
- Sentiments or anomaly scores as color

Tasks
- Showing the data overview and detection results
- Interpreting user behaviours from different perspectives
- Facilitating visual data comparisons
- Revealing users’ impacts in social communication
- Easy browsing of raw data
- Flexible data labeling

Context
- Anomaly Detection is important.
- Challenging to find completely automated solutions

Contribution
- TargetVue: a system that detects and supports interactive exploration of anomalous users
- New glyph design and the grid layout
- Evaluation through a bot detection challenge and case a case study

Requirements
1. Feature Selection
2. Anomaly Detection in Context
3. Ranking Threats
4. Learn from User Feedback

Global View
- Data: dimensionality reduced mean feature vector, kernel density estimation
- Encoding: location, contour map (white to blue)
- Task: overview
- Outliers are in the low density areas

Feature Variation and Propagation View
- Data: derived feature z-score (difference from baseline), users in communication threads
- Encoding: temporal heatmap, propagation view (introduced in FluxFlow)
- High impact users have many other users in the thread

User list and Messages
- Data: user profile information, raw messages
- Encoding: high frequency tag cloud, list of messages and user profiles
- Task: browsing raw data and overview
Inspection: Behaviour Glyph
• Data: posting and responding activity timeline, duration, number of users involved, sentiment of the threads
• Encoding: circular timeline, line mark (see below)
 • line mark: thickness (number of users), length (duration), color (sentiment), intersection (time when the user join).

Inspection: Z-glyph
• Data: derived z-score of different features, (based on mean and standard deviation of features)
• Encoding: baseline circle, color coded area mark

Inspection: Relation glyph
• Data: interaction relationships between users
• Encoding: directed links

Inspection: Layout
• Triangle mesh for placement
• Fast linear layout
• Preserve topology
• Maximize average similarity (clustering) between neighbouring glyphs

Interaction

Agenda
• Context and Contribution
• Requirements, Data and Tasks
• Design of TargetVue
• Evaluation and Comments

Evaluation
• The investigators used the system in social bot detection challenge.
 • Use global view to pick out outliers and anomalies
 • Inspect the users, and study their behaviour
 • Inspect specific features of users
 • Tune the model
• Example usage on Email data.
• Domain expert interview (2 experts): “Comprehensive”, “very powerful”

Comments
• Delivers what are promised (Explicit reference to the requirements and tasks).
• Glyph design is information dense, effective for identifying anomalies, encoding may not be the most visually effective.
• Scaling limit is unclear (mentioned that the pipeline is built on hadoop, used the system for twitter data of 8000 users and 4M tweets)
• Evaluation in the future would be helpful.

Questions?