Ch 14: Embed Focus+Context
Papers: TreeJuxtaposer

Tamara Munzner
Department of Computer Science
University of British Columbia

CPSC 547, Information Visualization
Day 14: 5 November 2015

http://www.cs.ubc.ca/~tmm/courses/547-15
News

• reminder: proposals due by Mon 5pm
Embed: Focus+Context

• combine information within single view
• elide
 – selectively filter and aggregate
• superimpose layer
 – local lens
• distortion design choices
 – region shape: radial, rectilinear, complex
 – how many regions: one, many
 – region extent: local, global
 – interaction metaphor
Idiom: **DOITrees Revisited**

- elide
 - some items dynamically filtered out
 - some items dynamically aggregated together
 - some items shown in detail

Idiom: **Fisheye Lens**

- distort geometry
 - shape: radial
 - focus: single extent
 - extent: local
 - metaphor: draggable lens

http://tulip.labri.fr/TulipDrupal/?q=node/351
http://tulip.labri.fr/TulipDrupal/?q=node/371
Idiom: Stretch and Squish Navigation

- distort geometry
 - shape: rectilinear
 - foci: multiple
 - impact: global
 - metaphor: stretch and squish, borders fixed

System: TreeJuxtaposer

Distortion costs and benefits

• benefits
 – combine focus and context information in single view

• costs
 – length comparisons impaired
 • network/tree topology comparisons unaffected: connection, containment
 – effects of distortion unclear if original structure unfamiliar
 – object constancy/tracking maybe impaired

Further reading

 – Chap 14: Embed: Focus+Context

What and why: Data and task abstraction

- **data:** trees
 - phylogenetic tree reconstruction
 - siblings unordered, interior nodes inferred

- **task:** compare topological structure
 - larger query scopes require more explicit tool support
 - compare several is more difficult than identify/inspect one
 - even trickier: summarize all

- **derived data:** structural differences
 - best corresponding node in other tree
How: Idiom design decisions

• juxtapose linked views
 – show two tree layouts side by side
 – linked navigation

• encode with color: linked highlighting
 – structural differences
 – corresponding subtree (click select)
 – best corresponding node (hover select)
How: Idiom design decisions

- **embed focus+context in single view**
 - reduce with complex combination of filtering and aggregation
- **distort geometry**
 - metaphor: stretch and squish navigation
 - shape: rectilinear
 - foci: multiple
 - impact: global
Algorithm: Stretch and squish navigation

• guaranteed visibility of semantically important marks even when squished small
 – TJ: scalability to 500K nodes
 • all preprocessing subquadratic
 • all realtime rendering sublinear

• guaranteed visibility
 – marks always visible
 – easy with small datasets
Guaranteed visibility challenges

• hard with larger datasets

• reasons a mark could be invisible
 – outside the window
 • AD solution: constrained navigation
 – underneath other marks
 • AD solution: avoid 3D
 – smaller than a pixel
 • AD solution: smart culling
Guaranteed visibility: Small items

- naïve culling may not draw all marked items
Guaranteed visibility: Small items

- Naïve culling may not draw all marked items

Guaranteed visibility of marks

No guaranteed visibility
Structural comparison

- rayfinned fish
 - salamander
 - frog
 - mammal
 - bird
 - crocodile
 - lizard
 - snake
 - turtle
 - lungfish

- rayfinned fish
 - lungfish
 - salamander
 - frog
 - turtle
 - snake
 - crocodile
 - mammal
 - bird
Matching leaf nodes

- rayfinned fish
 - salamander
 - frog
 - mammal
 - bird
 - crocodile
 - lizard
 - snake
 - turtle
 - lungfish
Matching leaf nodes
Matching leaf nodes

diagram with leaf nodes:
- rayfinned fish
 - salamander
 - frog
 - mammal
 - bird
 - crocodile
 - lizard
 - snake
 - turtle
 - lungfish

diagram with leaf nodes:
- rayfinned fish
 - lungfish
 - salamander
 - frog
 - turtle
 - snake
 - crocodile
 - mammal
 - bird
Matching interior nodes

- rayfinned fish
 - salamander
 - frog
 - mammal
 - bird
 - crocodile
 - lizard
 - snake
 - turtle
 - lungfish
- rayfinned fish
 - lungfish
 - salamander
 - frog
 - mammal
 - turtle
 - snake
 - crocodile
 - mammal
 - bird
Matching interior nodes

- rayfinned fish
 - salamander
 - frog
 - mammal
 - bird
 - crocodile
 - lizard
 - snake
 - turtle
 - lungfish
Matching interior nodes

- rayfinned fish
- salamander
- frog
- mammal
- bird
- crocodile
- lizard
- snake
- turtle
- lungfish
Matching interior nodes

- rayfinned fish
 - salamander
 - frog
 - mammal
 - bird
 - crocodile
 - lizard
 - snake
 - turtle
 - lungfish
- rayfinned fish
 - lungfish
 - salamander
 - frog
 - turtle
 - snake
 - crocodile
 - mammal
 - bird
Similarity score: \(S(m,n) \)

\[
S(m,n) = \frac{|L(m) \cap L(n)|}{|L(m) \cup L(n)|} = \frac{\{E,F\}}{\{D,E,F\}} = \frac{2}{3}
\]
Best Corresponding Node

BCN(m) = \arg\max_{v \in T_2} (S(m, v))

- computable in $O(n \log^2 n)$
- linked highlighting
Marking structural differences

Nodes for which $S(v, \text{BCN}(v)) \neq 1$

- matches intuition
Next Time

• proposals: by 5pm Mon

• Thu Nov 5, to read
 – VAD Ch. 15: Analysis Case Studies