Algorithm: Stretch and Squish Navigation
• guaranteed visibility of semantically important marks even when squished small
 – T-J scalability to 500K nodes
 – all preprocessing subquadratic
 – all realtime rendering sublinear
• guaranteed visibility
 – marks always visible
 – easy with small datasets

Distortion costs and benefits
• benefits
 – combine focus and context information in single view
• costs
 – length comparisons impaired
 – network tree topology comparisons unaltered
 – connect component
 – effects of distortion unclear if original structure unfamiliar
 – object constancy/trackability impaired

Further reading
 – Drop 14: Embed Focus+Context

Idiom: Stretch and Squish Navigation
• distort geometry
 – shape: rectilinear
 – foci: multiple
 – impact: global
 – metaphor: stretch and squish navigation
• reason a mark could be invisible
 – marked are undrawn, interior nodes inferred
 – task: compare topological structure
 – larger query spaces require more explicit tool support
 – compare several is more difficult than identify/inspect one
 – even similar variance of derived data:
 – structural differences
 – best corresponding node in other tree

Idiom: Fisheye Lens
• distort geometry
 – shape: radial
 – focus: single extent
 – extent: local
 – metaphor: draggable lens

Idiom: DOITrees Revisited
• embed focus+context in single view
 – reduce with complex combination of filtering and aggregation
 – distort geometry
 – metaphor: stretch and squash navigation
 – shape: rectilinear
 – foci: multiple
 – impact: global

Idiom: Embed Focus+Context
• embed
 – Elide Data
 – Superimpose Layer
 – Distort Geometry
• benefits
 – combine focus and context information in single view
• costs
 – length comparisons impaired
 – network tree topology comparisons unaltered
 – connection component
 – effects of distortion unclear if original structure unfamiliar
 – object constancy/trackability impaired

How: Idiom design decisions
• embed focus+context in single view
 – reduce with complex combination of filtering and aggregation
 – distort geometry
 – metaphor: stretch and squash navigation
 – shape: rectilinear
 – foci: multiple
 – impact: global

What and why: Data and task abstraction
• data: trees
 – phylogenetic tree reconstruction
 – siblings unmerged, interior nodes inferred
• task: compare topological structure
 – larger query spaces require more explicit tool support
 – compare several is more difficult than identify/inspect one
 – even similar variance of derived data:
 – structural differences
 – best corresponding node in other tree

How: Idiom design decisions
• embed focus+context in single view
 – reduce with complex combination of filtering and aggregation
 – distort geometry
 – metaphor: stretch and squash navigation
 – shape: rectilinear
 – foci: multiple
 – impact: global

Guaranteed visibility challenges
• hard with larger datasets
 – reasons a mark could be invisible
 – outside the window
 – AD solution: constrained navigation
 – underneath other marks
 – AD solution: avoid 3D
 – smaller than a pixel
 – AD solution: smart culling

Guaranteed visibility
• guaranteed visibility of marks even when squished small

TreeJuxtaposer video
Structural comparison

Matching leaf nodes

Matching interior nodes

Similarity score: $S(m,n)$

Best Corresponding Node

Marking structural differences

Next Time

* proposals: by 5pm Mon
 * Thu Nov 5, to read
 - VAD Ch. 15: Analysis Case Studies